Proline accumulation is one of the major responses of plants to many abiotic stresses. However, the significance of proline accumulation for drought stress tolerance remains enigmatic in crop plants. First, we examined the natural variation of the pyrolline-5-carboxylate synthase (P5CS1) among 49 barley genotypes. Allele mining identified a previously unknown allelic series that showed polymorphisms at 42 cis-elements across the P5CS1 promoter. Selected haplotypes had quantitative variation in P5CS1 gene expression and proline accumulation, putatively influenced by both abscisic acid-dependent and independent pathways under drought stress. Next, we introgressed the P5CS1 allele from a high proline accumulating wild barley accession ISR42-8 into cultivar Scarlett developing a near-isogenic line (NIL-143). NIL-143 accumulated higher proline concentrations than Scarlett under drought stress at seedling and reproductive stages. Under drought stress, NIL-143 showed less pigment damage, sustained photosynthetic health, and higher drought stress recovery compared to Scarlett. Further, the drought-induced damage to yield-related traits, mainly thousand-grain weight, was lower in NIL-143 compared with Scarlett in field conditions. Our data uncovered new variants of the P5CS1 promoter and the significance of the increased proline accumulation regulated by the P5CS1 allele of ISR42-8 in drought stress tolerance and yield stability in barley.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.14445 | DOI Listing |
Tree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFJ Insect Sci
January 2025
Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA.
The role of flood and drought stress on Xylosandrus ambrosia beetle attacks and colonization in nursery trees with varying levels of water stress tolerance has not yet been studied. This study aimed to examine ambrosia beetle preference for tree species varying in their tolerance to water stress. Container-grown dogwoods, redbuds, and red maples were exposed to flood, drought, or sufficient water treatments for 28 d and beetle attacks were counted every third day.
View Article and Find Full Text PDFAnn Bot
January 2025
Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 01 Třeboň, Czech Republic.
Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Life Sciences, East China Normal University, Shanghai, China.
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Plant Biology, University of Szeged, Közép fasor 52., H6726 Szeged, Hungary.
The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!