Background: Cerebral creatine deficiency syndromes (CCDS) are disorders affecting creatine synthesis or transport. Several methods have been developed to measure creatine and guanidinoacetate (GAA) in different body fluids including methods based on gas chromatography-mass spectrometry (GC-MS) and High-pressure liquid chromatography mass spectrometry (HPLC-MS). The diagnosis of CCDS is then confirmed by sequencing of creatine biosynthesis genes guanidinoacetate methyltransferase (GAMT) and Arginine: glycine amidinotransferase (GATM) and creatine transporter gene solute carrier family 6 member 8 (SLC6A8) or by functional enzymatic assay. The aim of the current study was to find the most reliable and accurate screening method for CCDS by comparing methods using Nuclear Magnetic Resonance spectroscopy (NMR), GC-MS and HPLC-MS. Additionally, this study was performed to estimate the prevalence of CCDS in a cohort of Egyptian patients and potentially to discover novel variants.
Subjects And Methods: The study was conducted on 150 subjects with clinical signs and symptoms consistent with CCDS. Metabolic profiling of urine samples was performed using three techniques: 1) GC-MS 2) Ultra high-pressure (or performance) liquid chromatography - Tandem Mass Spectrometry (UHPLC- MS/MS) and 3) NMR.
Results: The linearity of peak areas for creatine and GAA by UHPLC-MS/MS and NMR covered and exceeded the ranges normally found in urine. The limit of quantification and the inter-day precision results for creatine and GAA were more robust by UHPLC-MS/MS than NMR. Ten cases were identified as being positive for CCDS by our analytical approaches and underwent next generation sequencing (NGS) for GAMT, GATM and SLC6A8 genes. NGS was performed and confirmed one patient with one likely Pathogenic variant in GAMT gene: (NC_000019.10:g.1401317C > G, NP_000147.1:p.Ala54Pro). Additionally, we describe four novel intronic variants in the GATM gene: c.1043-357del and c.1043-357_1043-356insT, and were predicted to activate cryptic acceptor site with potential alteration of splicing, c.979-227G > A was found to significantly alter the Exon Splice Enhancer (ESE) xon Splice Silencer (ESS) motifs ratio and c.1042 + 262del which was found to have no implications on splicing.
Conclusions: Both UHPLC-MS/MS and NMR spectroscopy are comparable to GC-MS in screening for CCDS. Nonetheless, the UHPLC-MS/MS method had better performance than NMR spectroscopy. Additionally, Sequencing of the full length of GATM, GAMT, and SLC6A8 genes is needed to identify intronic variants that could cause CCDS via affecting splice sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cca.2022.09.005 | DOI Listing |
Front Genet
January 2025
Genetics and Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Introduction: Mucopolysaccharidosis type VI (MPSVI), an autosomal recessive lysosomal storage disorder caused by pathogenic variants in gene. Usually, whole exome sequencing (WES) can identify these variants, and if WES failed to detect causative variants, whole-genome sequencing (WGS) may be considered to investigate deep intronic variations and structural alterations in patients.
Methods: Whole-exome sequencing (WES) and whole genome sequencing (WGS) were performed in a Chinese family having a boy with suspected diagnosis of MPS with macrocephaly, coarse facial features, broad forehead, thick lips, frontal bossing, craniosynostosis, blue spots, frequent upper respiratory infections, inguinal hernia, and dysostosis multiplex.
Nature
January 2025
Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Analyze the clinical phenotype and gene mutations of a family with hereditary FXII deficiency, and preliminarily explore its phenotypic manifestations. The routine coagulation indicators and related coagulation factors were measured.Thromboelastography and thrombin generation tests simulated coagulation and anticoagulation states in vitro and in vivo.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
Background: Stargardt disease type 1 (STGD1) is a progressive retinal disorder caused by bi-allelic variants in the ABCA4 gene. A recurrent variant at the exon-intron junction of exon 6, c.768G>T, causes a 35-nt elongation of exon 6 that leads to premature termination of protein synthesis.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Biallelic intronic pentanucleotide repeat expansions, mainly (AAGGG)exp and/or (ACAGG)exp in RFC1, are detected in cerebellar ataxia, neuropathy and vestibular areflexia syndrome, late-onset ataxia, and in a wide disease spectrum including Charcot-Marie-Tooth disease, multiple system atrophy, and Parkinson's disease (PD). However, the genotype-phenotype correlation and underlying mechanism are mostly unknown. We screened RFC1-repeat expansions in 1445 patients with parkinsonism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!