Error correction and improved precision of spike timing in converging cortical networks.

Cell Rep

Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:

Published: September 2022

The brain propagates neuronal signals accurately and rapidly. Nevertheless, whether and how a pool of cortical neurons transmits an undistorted message to a target remains unclear. We apply optogenetic white noise signals to small assemblies of cortical pyramidal cells (PYRs) in freely moving mice. The directly activated PYRs exhibit a spike timing precision of several milliseconds. Instead of losing precision, interneurons driven via synaptic activation exhibit higher precision with respect to the white noise signal. Compared with directly activated PYRs, postsynaptic interneuron spike trains allow better signal reconstruction, demonstrating error correction. Data-driven modeling shows that nonlinear amplification of coincident spikes can generate error correction and improved precision. Over multiple applications of the same signal, postsynaptic interneuron spiking is most reliable at timescales ten times shorter than those of the presynaptic PYR, exhibiting temporal coding. Similar results are observed in hippocampal region CA1. Coincidence detection of convergent inputs enables messages to be precisely propagated between cortical PYRs and interneurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513803PMC
http://dx.doi.org/10.1016/j.celrep.2022.111383DOI Listing

Publication Analysis

Top Keywords

error correction
12
correction improved
8
improved precision
8
spike timing
8
white noise
8
directly activated
8
activated pyrs
8
postsynaptic interneuron
8
precision
5
precision spike
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!