The extreme resistance of bacterial spores to sterilization makes them a major concern to the food industry and consumers. In this study, the effect of glucose on the inactivation of Bacillus subtilis spores by high pressure thermal sterilization (HPTS) was evaluated. The results showed that the protective effects of glucose increased with the increase in its concentration. Compared with the HPTS control (no addition of glucose), the activity of Na+/K+-ATPase was increased, the leakage of proteins and the release of 2,6-pyridine dicarboxylic acid (DPA) was decreased, and the vibrational strength of the functional group P = O was reduced by the addition of glucose. At the same time, glucose treatment increased the content of α-helix by 6%-22%, while decreased the random coil content by 5%-13% of the cellular protein. In conclusion, the addition of glucose protected the cell membrane, Na+/K+-ATPase, cellular nucleic acids and proteins of B. subtilis under HPTS treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fnac094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!