Molecular Monitoring of Lymphomas.

Annu Rev Pathol

Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA; email:

Published: January 2023

Molecular monitoring of tumor-derived alterations has an established role in the surveillance of leukemias, and emerging nucleic acid sequencing technologies are likely to similarly transform the clinical management of lymphomas. Lymphomas are well suited for molecular surveillance due to relatively high cell-free DNA and circulating tumor DNA concentrations, high somatic mutational burden, and the existence of stereotyped variants enabling focused interrogation of recurrently altered regions. Here, we review the clinical scenarios and key technologies applicable for the molecular monitoring of lymphomas, summarizing current evidence in the literature regarding molecular subtyping and classification, evaluation of treatment response, the surveillance of active cellular therapies, and emerging clinical trial strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-pathol-050520-044652DOI Listing

Publication Analysis

Top Keywords

molecular monitoring
12
monitoring lymphomas
8
molecular
5
lymphomas
4
lymphomas molecular
4
monitoring tumor-derived
4
tumor-derived alterations
4
alterations established
4
established role
4
role surveillance
4

Similar Publications

The Varroa destructor (hereafter referred to as Varroa) is a major pest of honeybees that is generally controlled using pyrethroid-based acaricides. However, resistance to these insecticides has become a growing problem, driven by the acquisition of knockdown resistance (kdr) mutations in the mite's voltage-gated sodium channel (vgsc) gene. Resistance mutations in the vgsc gene, such as the L925V mutation, can confer resistance to pyrethroids like flumethrin and tau-fluvalinate.

View Article and Find Full Text PDF

Tirzepatide mitigates cognitive decline in zebrafish model of type 2 diabetes mellitus induced by high-fat diet.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India.

In examining the enduring consequences of diabetes, recent research has focused on the anticipated outcomes of the condition. Specifically, cognitive impairment has been linked to diabetes mellitus dating back to the discovery of insulin. This study delves into the neuroprotective effects of TZP, i.

View Article and Find Full Text PDF

Plasmonic Slippery Surface for Surface-Enhanced Raman Spectroscopy and Protein Adsorption Inhibition.

Anal Chem

January 2025

Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.

Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil.

View Article and Find Full Text PDF

Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.

View Article and Find Full Text PDF

Background: Autoimmune bullous disorder (AIBD) is a diverse group of blistering dermatoses that affects the skin and mucous membrane, characterized by the formation of autoantibodies against the desmosomal glycoproteins and adhesion molecular components of the basement membrane zone. Various immunoassay techniques for serological diagnosis are Direct Immunofluorescence (DIF), Indirect Immunofluorescence (IIF), Enzyme Linked Immunosorbent Assay (ELISA) and immunoblotting. Quantitative ELISA titer can also be used to monitor the disease activity and response to treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!