Equipped with a novel isolator-housed metabolic cage system, a study in PLOS Biology assessed how the metabolism of mice harboring a defined minimal microbial community (OligoMM12) differs from that of germ-free and conventionally colonized mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491537 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3001793 | DOI Listing |
China CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.
Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.
ISME Commun
January 2025
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Amsterdam, Netherlands.
Background: The initial colonization of the infant gut is a complex process that defines the foundation for a healthy microbiome development. is one of the first colonizers of newborns' gut, playing a crucial role in the healthy development of both the host and its microbiome. However, exhibits significant genomic diversity, with subspecies ( subsp.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran.
The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China.
Background: The oral microbiota is a diverse and complex community that maintains a delicate balance. When this balance is disturbed, it can lead to acute and chronic infectious diseases such as dental caries and periodontitis, significantly affecting people's quality of life. Developing a new antimicrobial strategy to deal with the increasing microbial variability and resistance is important.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!