In the last century, Fusarium wilt of banana (FWB) destroyed the banana cultivar Gros Michel. The Cavendish cultivars saved the global banana industry, and currently they dominate global production (~50%) and the export trade (~95%). However, a new strain called Tropical Race 4 (TR4) surfaced in the late 1960's, spread globally and greatly damages Cavendish plantations as well as manifold local varieties that are primarily grown by small holders. Presently, there is no commercially available replacement for Cavendish and hence control strategies must be developed and implemented to manage FWB. Here, we studied whether it is possible to induce resistance to TR4 by pre-inoculations with different Fusarium spp. Only pre-treatments with an avirulent Race 1 strain significantly reduced disease development of TR4 in a Cavendish genotype and this effect was stable at various nutritional and pH conditions. We then used transcriptome analysis to study the molecular basis of this response. Several genes involved in plant defence responses were up-regulated during the initial stages of individual infections with TR4 and Race 1, as well as in combined treatments. In addition, a number of genes in the ethylene and jasmonate response pathways as well as several gibberellin synthesis associated genes were induced. We observed upregulation of RGA2 like genes in all treatments. Hence, RGA2 could be a key factor involved in both R1 and TR4 resistance. The data support the hypothesis that activating resistance to Race 1 in Cavendish bananas affects TR4 development and provide a first insight of gene expression during the interaction between various Fusarium spp. and banana.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491598PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273335PLOS

Publication Analysis

Top Keywords

fusarium spp
12
fusarium wilt
8
wilt banana
8
tropical race
8
race cavendish
8
cavendish
6
tr4
6
fusarium
5
banana
5
race
5

Similar Publications

Trichoderma spp. are among the most studied biocontrol agents. While extensive work has been done to understand Trichoderma antagonistic mechanisms, additional research is needed to fully understand how Trichoderma spp.

View Article and Find Full Text PDF

Neurotoxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection.

Toxins (Basel)

January 2025

Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland.

Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common mycotoxins with neurological diseases. Articles from 2001 to 2024 were analyzed.

View Article and Find Full Text PDF

Evaluation of spp. System Model Against .

J Fungi (Basel)

January 2025

Instituto de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. República de Italia # 780, Azul 7300, BA, Argentina.

Cereal crops are affected by one of the most devastating diseases worldwide, known as Fusarium head blight (FHB), with being the most isolated causal pathogen. Another species associated with this disease is . This species has been considered a relatively weak pathogen compared to , but its importance has increased due to its occurrence in cereal grains worldwide.

View Article and Find Full Text PDF

Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: , , spp.

View Article and Find Full Text PDF
Article Synopsis
  • Cultivable microbial communities from Bryophyllum pinnatum, a plant found in extreme environments, may have significant biotechnological applications, but little is known about their role in promoting plant growth.
  • A study isolated 73 bacterial strains from the plant's roots and surrounding soil, identifying 16 genera, with Bacillus and Pseudarthrobacter being the most abundant, and found that over 50% of these strains tolerate heat stress.
  • Some isolates showed potential for plant growth enhancement and biocontrol, notably increasing Arabidopsis fresh weight, while a few had inhibitory effects on growth parameters, highlighting the need for further exploration of these bacteria's benefits for nutrient uptake and stress resilience in barren soils.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!