Effect of alfalfa on subsurface (tile) nitrogen and phosphorus loss in Ohio, USA.

J Environ Qual

Biological Systems Engineering Dep., Univ. of Wisconsin-Madison, Agricultural Engineering Building, 460 Henry Mall, Madison, WI, 53706, USA.

Published: November 2022

Growing annual crops such as corn (Zea mays L.) can lead to considerable nutrient losses through subsurface drainage in agricultural fields, posing a serious threat to surface water quality in the midwestern United States. Perennial crops have the potential to reduce these nutrient losses. However, more comprehensive data are needed on the nutrient loss effect of perennial crops. We examined the effect of alfalfa (Medicago sativa L.) on nitrate-nitrogen (NO -N), total nitrogen (TN), dissolved reactive phosphorus (DRP), and total phosphorus (TP) in subsurface drainage using a before-after-control-impact (BACI) experimental design with one control field (with annual crops) and one impact field (with alfalfa) each on two farms (Sites A and B) located in northwestern Ohio. The "Before" period (prior to planting alfalfa at the impact field) extended for 4 yr (2013-2017) at Site A and 6 yr (2011-2017) at Site B; the "After" period extended for an additional 2 yr at both sites. Reductions in the mean monthly discharge and loads of NO -N, TN, DRP, and TP were significant at Site A, whereas the only significant change at site B was a reduction in the mean monthly TP load. Significant reductions in NO -N loads were observed during spring and winter at Site A. In addition, alfalfa reduced the variability of discharge and nutrient loads through subsurface drainage at both sites. Our findings suggest that introducing alfalfa into annual crop rotations has the potential to reduce subsurface nutrient loads and increase the resiliency of agricultural systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20414DOI Listing

Publication Analysis

Top Keywords

subsurface drainage
12
annual crops
8
nutrient losses
8
perennial crops
8
potential reduce
8
impact field
8
nutrient loads
8
alfalfa
6
nutrient
5
site
5

Similar Publications

The Eastern Corn Belt (ECB) node of the Long-Term Agroecosystem Research (LTAR) network is representative of row crop agricultural production systems in the poorly drained, humid regions of the US Midwest and a significant focus for addressing water quantity and quality concerns affecting Lake Erie and the Gulf of Mexico. The objectives of this paper were to (1) present relevant background information and collection methodology, (2) provide summary analyses of measured data, and (3) provide details for accessing the dataset and discuss potential database applications. The ECB-water quality (ECB-WQ) database is comprised of hydrology and water quality data from three privately owned farms in Northwest Ohio and Northeast Indiana and is available for download through the United States Department of Agriculture Ag Data Commons.

View Article and Find Full Text PDF

Sources and Pathways of PFAS Occurrence in Water Sources: Relative Contribution of Land-Applied Biosolids in an Agricultural Dominated Watershed.

Environ Sci Technol

January 2025

Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, Indiana 47907, United States.

This study evaluated PFAS occurrence in rural well water and surface water relative to land application of biosolids in a tile-drained agriculture-dominated watershed. Spatial data were used to identify potentially vulnerable rural wells based on their proximity to biosolid-permitted land and location with respect to groundwater flow. Water was collected from 103 private wells in Greater Tippecanoe County Indiana and 168 surface water locations within the Region of the Great Bend of the Wabash River watershed.

View Article and Find Full Text PDF

Effectiveness Overview of Agricultural Conservation Practices for Water Quality Improvement Part II.

J Nat Resour Agric Ecosyst

January 2024

Office of Research and Development, USA Environmental Protection Agency, Research Triangle Park, North Carolina, USA.

Article Synopsis
  • Significant government investment in agricultural conservation practices (ACPs) aimed at improving water quality is not fully effective, with ongoing issues of eutrophication and hypoxia in water bodies.
  • An overview of ten ACPs reveals differences in performance and cost-effectiveness, particularly in reducing sediment, nitrogen (N), and phosphorus (P), with only three ACPs effectively addressing all three constituents.
  • The article suggests that certain water management practices are notably effective in nutrient reduction, while others like conservation crop rotation show potential for economic benefits, underscoring the need for better financial prioritization and long-term monitoring to enhance outcomes.
View Article and Find Full Text PDF

Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.

View Article and Find Full Text PDF

Solar-powered pumping at a remote denitrifying bioreactor.

J Environ Manage

December 2024

Department of Crop Sciences, University of Illinois at Urbana-Champaign, AW-101 Turner Hall, 1103 South Goodwin Avenue, Urbana, IL, USA. Electronic address:

Pumping surface water from a ditch into a denitrifying woodchip bioreactor could improve nitrate-nitrogen (N) removal by minimizing flow variabilities such as early flow cessation at a given subsurface drainage outlet and flashy drainage hydrographs. Few field-scale subsurface drainage bioreactors with pumping configurations have been assessed. Such evaluations would help better bound reasonable expectations of the benefits and drawbacks at these more advanced bioreactors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!