Cytochrome oxidase (CcO) is a pivotal enzyme of the mitochondrial respiratory chain, which sustains bioenergetics of eukaryotic cells. Cox12, a peripheral subunit of CcO oxidase, is required for full activity of the enzyme, but its exact function is unknown. Here experimental evolution of a Δ strain for ∼300 generations allowed to restore the activity of CcO oxidase. In one population, the enhanced bioenergetics was caused by a A375V mutation in the cytosolic AAA+ disaggregase Hsp104. Deletion or overexpression of also increased respiration of the Δ ancestor strain. This beneficial effect of Hsp104 was related to the loss of the [] prion, which forms cytosolic amyloid aggregates of the Sup35 protein. Overall, our data demonstrate that cytosolic aggregation of a prion impairs the mitochondrial metabolism of cells defective for Cox12. These findings identify a new functional connection between cytosolic proteostasis and biogenesis of the mitochondrial respiratory chain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727813PMC
http://dx.doi.org/10.1091/mbc.E21-10-0499DOI Listing

Publication Analysis

Top Keywords

cytochrome oxidase
8
mitochondrial respiratory
8
respiratory chain
8
cco oxidase
8
[psi] prion
4
prion modulates
4
modulates cytochrome
4
oxidase
4
oxidase deficiency
4
deficiency caused
4

Similar Publications

Mansonia dives is recognized as a vector for brugian filariasis in Thailand. A recent study analyzing the cytochrome c oxidase subunit I (COI) gene revealed two distinct clades within the Ma. dives population in Thailand.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) system is vital to placental development, formation, and function. Alterations in this system in the placenta have been associated with altered fetal growth. However, changes in placental mTOR signaling across gestation are poorly understood.

View Article and Find Full Text PDF

As per published literature, the tick is the primary Lyme disease vector in British Columbia (BC), while the tick species is the dominant vector on the East Coast of Canada, with no . presence seen in BC. However, a recent publication reported presence of in BC which initiated this study to determine the accuracy of the microscopic identification of ticks received in the BC Centre for Disease Control (BCCDC) Public Health Laboratory and compare morphologic methods to molecular methods.

View Article and Find Full Text PDF

Genetic analysis of L 1758 (Mollusca, Bivalvia, Pinnidae) in the Northwest Cabo Verde Islands (Central-East Atlantic).

PeerJ

January 2025

CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal.

The rough pen shell Linnaeus, 1758 (family Pinnidae) is a mollusc with an Atlantic-Mediterranean distribution, typically inhabiting coarse sandy substrates. Habitat degradation is considered the primary cause of population decline, leading to the designation 'Vulnerable' in certain regions. In this study, we conducted a genetic analysis of populations of from Cabo Verde and compared them with populations from the Mediterranean and Macaronesia.

View Article and Find Full Text PDF
Article Synopsis
  • Pomacea canaliculata is an invasive aquatic species with varying dietary habits and intestinal microbiota across different habitats (pond, river, ditch).
  • This study utilized gene sequencing and metabolomics to analyze intestinal samples, revealing the highest dietary diversity in ditches and significant differences between male and female diets in ponds.
  • The findings indicate that changes in diet affect intestinal microbiota and metabolic pathways, helping to explain how P. canaliculata adapts physiologically to diverse environments, which is crucial for understanding its impact on aquatic ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!