Metal-free graphene-based catalytic membranes for persulfate activation toward organic pollutant removal: a review.

Environ Sci Pollut Res Int

School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China.

Published: October 2022

Owing to their ultrathin two-dimensional structure and efficient catalytic ability for persulfate activation, graphene-based nanocarbons exhibit considerable application potential in fabricating carbonaceous composite membranes for in situ catalytic oxidation to remove organic pollutants. This approach offers significant advantages over conventional batch systems. However, the relationships between the physicochemical properties of carbon mats and performance of graphene-based catalytic membranes in water purification remain ambiguous. Herein, we summarize the main mechanisms of in situ catalytic oxidation and the facile fabrication strategies of carbonaceous composite membranes. Different factors influencing the performance of graphene-based catalytic membranes are comprehensively discussed. The defective level, heteroatom doping, and stacking morphology of carbon mats and operational conditions during filtration play critical roles in the oxidative degradation of target pollutants. Long-term operation leads to the deterioration of catalytic activity and transmembrane pressure, especially in the complex water matrix. Finally, the present challenges and future perspectives are presented to improve the anti-fouling performance and catalytic stability of membranes and develop scalable fabrication methods to promote the engineering applications of in situ catalytic oxidation in real water purification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-23063-zDOI Listing

Publication Analysis

Top Keywords

graphene-based catalytic
12
catalytic membranes
12
situ catalytic
12
catalytic oxidation
12
catalytic
9
persulfate activation
8
carbonaceous composite
8
composite membranes
8
carbon mats
8
performance graphene-based
8

Similar Publications

Activity and stability origin of core-shell catalysts: unignorable atomic diffusion behavior.

Chem Sci

January 2025

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China

The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.

View Article and Find Full Text PDF

2D monolayer electrocatalysts for CO electroreduction.

Nanoscale

January 2025

Institute of Energy Power Innovation, North China Electric Power University, 2 Benigno Road, Beijing 102206, P. R. China.

The electrocatalytic carbon dioxide reduction reaction (CORR) is an attractive method for converting atmospheric CO into value-added chemicals and fuels. In order to overcome the low efficiency and durability that hinder its practical application, a significant amount of research has been dedicated to designing novel catalysts at the nanoscale and even the atomic scale. Two-dimensional (2D) monolayer materials inherit the merits of both 2D materials and single-atom materials.

View Article and Find Full Text PDF

The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.

View Article and Find Full Text PDF

CO Adsorption on a Single-Atom Catalyst Stably Embedded in Graphene.

Angew Chem Int Ed Engl

January 2025

Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125, Milano, Italy.

Confined single metal atoms in graphene-based materials have proven to be excellent catalysts for several reactions and promising gas sensing systems. However, whether the chemical activity arises from the specific type of metal atom or is a direct consequence of the confinement itself remains unclear.

View Article and Find Full Text PDF

Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or magnetic structure of graphene derivatives. Here, we introduce a protocol in which an on-surface reaction is initiated and carried out regardless of the substrate type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!