Barth syndrome (BTHS) is a rare X-linked genetic disease caused by mutations in TAFAZZIN. The tafazzin (Taz) protein is a cardiolipin remodeling enzyme required for maintaining mitochondrial function. Patients with BTHS exhibit impaired mitochondrial respiratory chain and metabolic function and are susceptible to serious infections. B lymphocytes (B cells) play a vital role in humoral immunity required to eradicate circulating antigens from pathogens. Intact mitochondrial respiration is required for proper B-cell function. We investigated whether Taz deficiency in mouse B cells altered their response to activation by anti-cluster of differentiation 40 (anti-CD40) + interleukin-4 (IL-4). B cells were isolated from 3-4-month-old wild type (WT) or tafazzin knockdown (TazKD) mice and were stimulated with anti-CD40 + IL-4 for 24 h and cellular bioenergetics, surface marker expression, proliferation, antibody production, and proteasome and immunoproteasome activities determined. TazKD B cells exhibited reduced mRNA expression of Taz, lowered levels of cardiolipin, and impairment in both oxidative phosphorylation and glycolysis compared to WT B cells. In addition, anti-CD40 + IL-4 stimulated TazKD B cells expressed lower levels of the immunogenic surface markers, cluster of differentiation 86 (CD86) and cluster of differentiation 69 (CD69), exhibited a lower proliferation rate, reduced production of immunoglobulin M and immunoglobulin G, and reduced proteasome and immunoproteasome proteolytic activities compared to WT B cells stimulated with anti-CD40 + IL-4. The results indicate that Taz is required to support T-cell-dependent signaling activation of mouse B cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-022-03692-z | DOI Listing |
J Immunother Cancer
October 2024
Department of Medicine, UCLA Medical Center, Los Angeles, California, USA.
Background: Tumor-selective oncolytic viral vectors are promising anticancer therapeutics; however, challenges with dosing and potency in advanced/metastatic cancers have limited efficacy and usage. NG-350A is a next-generation blood-stable adenoviral vector engineered to express an agonist anti-cluster of differentiation (CD)40 antibody without affecting tumor-selectivity and oncolytic potency.
Methods: Intravenous and intratumoral (IT) administration of NG-350A was assessed in a phase Ia/Ib study in patients with metastatic/advanced epithelial tumors (NCT03852511).
Blood Adv
November 2024
Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University Medical Center, Stanford University, Stanford, CA.
Blood Adv
November 2024
Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
Clin Exp Rheumatol
August 2024
Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea.
Objectives: To evaluate the role of Fcγ receptors (FcγR) and peptidyl arginine deiminase (PAD) in anti-citrullinated protein antibody (ACPA)-induced fibroblast-like synoviocytes (FLSs)-mediated osteoclastogenesis in patients with rheumatoid arthritis (RA).
Methods: FLSs and peripheral blood mononuclear cells were collected from patients with RA. We stimulated RA-FLS with ACPA (100 ng/ml) with and without anti-cluster of differentiation (CD)32a/CD64 (FcγRIIA/FcγRI) antibody and PAD-2/4 inhibitors.
Cancer Immunol Immunother
August 2024
Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Anti-cluster of differentiation (CD) 3 × α programmed death-ligand 1 (PD-L1) bispecific T-cell engager (BsTE)-bound T-cells (BsTE:T) are a promising new cancer treatment agent. However, the mechanisms of action of bispecific antibody-armed activated T-cells are poorly understood. Therefore, this study aimed to investigate the anti-tumor mechanism and efficacy of BsTE:T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!