Aims: To investigate whether treatment with γ-aminobutyric acid (GABA) alone or in combination with glucagon receptor (GCGR) monoclonal antibody (mAb) exerted beneficial effects on β-cell mass and α-cell mass, and to explore the origins of the regenerated β-cells in mice with type 1 diabetes (T1D).
Methods: Streptozotocin (STZ)-induced T1D mice were treated with intraperitoneal injection of GABA (250 μg/kg per day) and/or REMD 2.59 (a GCGR mAb, 5 mg/kg per week), or IgG dissolved in PBS for 8 weeks. Plasma hormone levels and islet cell morphology were evaluated by ELISA and immunofluorescence, respectively. The origins of the regenerated β-cells were analyzed by double-immunostaining, α-cell lineage-tracing and BrdU-tracing studies.
Results: After the 8-week treatment, GABA or GCGR mAb alone or in combination ameliorated hyperglycemia in STZ-induced T1D mice. GCGR mAb upregulated plasma insulin level and increased β-cell mass, and GABA appeared to have similar effects in T1D mice. However, combination treatment did not reveal any additive or synergistic effect. Interestingly, the GCGR mAb-induced increment of plasma glucagon level and α-cell mass was attenuated by the combined treatment of GABA. In addition, duct-derived β-cell neogenesis and α-to-β cell conversion but not β-cell proliferation contributed to the increased β-cell mass in T1D mice.
Conclusion: These results suggested that GABA attenuated α-cell hyperplasia but did not potentiates β-cell regeneration induced by GCGR mAb in T1D mice. Our findings provide novel insights into a combination treatment strategy for β-cell regeneration in T1D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00592-022-01970-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!