A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-adhesive contrast substrate for single-cell trapping and Raman spectroscopic analysis. | LitMetric

Non-adhesive contrast substrate for single-cell trapping and Raman spectroscopic analysis.

Lab Chip

Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India.

Published: October 2022

Droplet splitting by exploiting tailored surface wettability is emerging as an important pathway to creating ultralow volumes of samples that can have applications in bioassays, tissue engineering, protein chips, and material synthesis. Reduction of droplet volumes enables the encapsulation of single biological cells which allows high throughput screening. In this work, we demonstrate a facile fabrication approach to create a non-adhesive contrast quartz substrate that allows droplet splitting under gravitational force and its utilization to trap single biological cells for Raman spectroscopic studies. The non-adhesive contrast surface is created by low-power continuous-wave laser-assisted removal of the region of interest from a biocompatible non-adhesive silicone oil grafted quartz substrate. For a given laser spot dimension, the hydrophilic zone dimension is controlled irradiation with varying laser powers. The fabricated non-adhesive contrast surface can split a microliter droplet into pico- and sub-picolitre daughter droplets. By using the substrate, the trapping of a single polystyrene bead is demonstrated and the recording of Raman spectra is carried out. Additionally, the Raman spectra of two biological cells, yeast cells and human mononuclear cells (MNCs), from a daughter droplet are recorded independently and from a mixture of the solutions. This single-cell Raman analysis could find applications in cell identification and type discrimination, biochemical imaging, metabolic and functional characterization, and clinical and toxicity studies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2lc00665kDOI Listing

Publication Analysis

Top Keywords

non-adhesive contrast
16
biological cells
12
raman spectroscopic
8
droplet splitting
8
single biological
8
quartz substrate
8
contrast surface
8
raman spectra
8
non-adhesive
5
raman
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!