A hollow CoCuS with glutathione depleting and photothermal properties for synergistic dual-enhanced chemodynamic/photothermal cancer therapy.

J Mater Chem B

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.

Published: October 2022

Chemodynamic therapy has become an emerging cancer treatment strategy, in which tumor cells are killed through toxic reactive oxygen species (ROS), especially hydroxyl radicals (˙OH) produced by the Fenton reaction. Nevertheless, low ROS generation efficiency and ROS depletion by cellular antioxidant systems are still the main obstacles in chemodynamic therapy. In the present work, we propose a dually enhanced chemodynamic therapy obtained by inhibiting ˙OH consumption and promoting ˙OH production based on the administration of bimetallic sulfide CoCuS nanoparticles functionalized by polyethylene glycol. These bimetallic nanoparticles display glutathione depleting and photothermal properties. The nanoparticles are gradually degraded in a tumor microenvironment, resulting in Co and Cu release. The released Co triggers a Fenton-like reaction that turns endogenous hydrogen peroxide into highly toxic ˙OH. In the cellular environment, Cu ions are reduced to Cu by endogenous GSH, which decreases the intracellular antioxidant capacity and additionally up-regulates ˙OH production the Cu-induced Fenton-like reaction. Moreover, under near-infrared light irradiation, the bimetallic nanoparticles display a photothermal conversion efficacy of 46.7%, which not only improves chemodynamic therapy boosting a Fenton-like reaction but results in photothermal therapy through hyperthermia. Both cancer cell killing and tumor ablation experiments show that the bimetallic nanoparticles display outstanding therapeutic efficacy and negligible systemic toxicity, indicating their anticancer potential.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb01590kDOI Listing

Publication Analysis

Top Keywords

chemodynamic therapy
16
bimetallic nanoparticles
12
nanoparticles display
12
fenton-like reaction
12
glutathione depleting
8
depleting photothermal
8
photothermal properties
8
˙oh production
8
therapy
6
˙oh
5

Similar Publications

The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.

View Article and Find Full Text PDF

A multifunctional nanoplatform integrating multiple therapeutic functions may be an effective strategy to realize satisfactory therapeutic efficacy in the treatment of tumors. However, there is still a certain challenge in integrating multiple therapeutic agents into a single formulation using a simple method due to variations in their properties. In this work, multifunctional CuS-ICG@PDA-FA nanoparticles (CIPF NPs) with excellent ability to produce reactive oxygen species and photothermal conversion performance are fabricated by a simple and gentle method.

View Article and Find Full Text PDF

Low cure rate and high death rate of cancers have seriously threatened human health. The combining multiple therapies is a promising strategy for cancer treatment. In this study, we construct a novel multinucleated nanocomplex loaded with carbon dots (CDs-SA@TAMn) that responds to tumor microenvironment for combined photothermal/chemodynamic cancer therapy.

View Article and Find Full Text PDF

MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly invasive and fatal brain tumor with a grim prognosis, where current treatment modalities, including postoperative radiotherapy and temozolomide chemotherapy, yield a median survival of only 15 months. The challenges of tumor heterogeneity, drug resistance, and the blood-brain barrier necessitate innovative therapeutic approaches. This study introduces a strategy employing biomimetic magnetic nanorobots encapsulated with hybrid membranes derived from platelets and M1 macrophages to enhance blood-brain barrier penetration and target GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!