Visualization of root colonization by arbuscular mycorrhizal fungi (AMF) is the most elementary experiment in the field of mycorrhizal symbiosis. The most widely used approach for evaluating levels of AMF colonization is staining with trypan blue or ink, which is scored using the time-consuming grid intersection method. Here we demonstrate the use of an anthocyanin-based visual marker system for visualizing AMF colonization of Medicago truncatula roots. Expression of MtLAP1, a transcription factor which regulates the production of anthocyanins, from the AMF-induced Kunitz Protease Inhibitor 106 promoter, allowed the visualization of arbuscules in live plant tissues without microscopy or staining. This marker system allowed straightforward qualitative evaluation of the ram1, vpy and dmi3 AMF phenotypes using Agrobacterium rhizogenes hairy-root transformation. For the strigolactone biosynthesis mutant carotenoid cleavage dioxygenase 8a and a novel mutant scooby, which show quantitative AMF symbiotic phenotypes, the amount of anthocyanins in the roots estimated by spectrophotometry correlated very well with colonization levels estimated by staining and scoring using the grid intersection method. The LAP1-based marker system therefore provides a highly efficient approach for mutant screening and monitoring of AMF colonization in live tissues by eye, or for quantitative assessment using a simple and quick photometric assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.18504 | DOI Listing |
Microorganisms
December 2024
Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.
is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
Legume plants can interact with nitrogen-fixing rhizobia bacteria and arbuscular mycorrhizal fungi (AMF) simultaneously, forming a tripartite symbiotic association. Co-inoculation studies performed on a variety of legumes have shown that rhizobia and AMF influence each other when they co-occur in tripartite association and affect host plant nutrition and performance. Although single plant-microbe interactions have been extensively studied, our understanding in the field of tripartite interactions is insufficient and current knowledge cannot predict the symbiotic outcome, which appears to depend on many parameters.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China. Electronic address:
Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv.
View Article and Find Full Text PDFEnviron Res
December 2024
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, China. Electronic address:
Molybdenum (Mo) acts as a crucial nutrient for plant development, yet excessive soil exposure can cause detrimental effects. Molybdenosis symptoms remain subtle in many plants, largely due to the safeguarding functions of soil organisms, the fundamental biological mechanisms lack clarity. In this study, we explored the potential mechanisms for amending Mo-exposed soils with soil microbe-arbuscular mycorrhizal fungi (AMF) and soil fauna, specifically earthworms, to enhance model plant-alfalfa growth resistance through soil nutrient turnover perspectives.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
Institute of Genetics and Developmental Biology, Key Laboratory of Seed Innovation, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!