Herein, we demonstrate a Pd catalyzed C-4 borylation of structurally complex chloroquinolines with bis(pinacolato)diboron under relatively simple and efficient conditions. Moreover, the borylated quinolines were converted into oxaborole, trifluoroborate salt and boronic acid and also rendered in the Suzuki reaction successfully. The method was also applied for the synthesis of potential boron-based homeodomain interacting protein kinase 2 (HIPK2) inhibitors. The strategy opens up new avenues for the functionalization of quinolines as potential probes and pharmacological agents for future biomedical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403659PMC
http://dx.doi.org/10.1039/d2ra05063cDOI Listing

Publication Analysis

Top Keywords

borylated quinolines
8
potential boron-based
8
boron-based homeodomain
8
homeodomain interacting
8
interacting protein
8
protein kinase
8
kinase hipk2
8
hipk2 inhibitors
8
novel procedure
4
procedure synthesis
4

Similar Publications

Transition-metal-catalyzed selective and efficient activation of an inert C-H bond in an organic substrate is of importance for the development of streamlined synthetic methodologies. An attractive approach is the design of a metal catalyst capable of recognizing an organic substrate through noncovalent interactions to control reactivity and selectivity. We report here a spirobipyridine ligand that bears a hydroxy group that recognizes pyridine and quinoline substrates through hydrogen bonding, and in combination with an iridium catalyst enables site-selective C-H borylation.

View Article and Find Full Text PDF

Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes.

J Am Chem Soc

December 2024

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused -heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities.

View Article and Find Full Text PDF

We report herein a mild stereo- and regioselective dearomatization of quinolines using the simple low valent HCo(N )(PPh ) complex that exhibits labile ligands. Conditions to form selectively, at room temperature, high-valued 1,4-bis-borylated tetrahydroquinolines from simple starting heteroaromatic compounds have been developed. The efficient and selective functionalization of a large scope of quinolines bearing various electron-donating or electron-withdrawing substituents is presented, as well as the post-modification of the resulting C-B bond.

View Article and Find Full Text PDF

The quinolone-quinoline tautomerization is harnessed to effect the regioselective C8-borylation of biologically important 4-quinolones by using [Ir(OMe)(cod)] as the catalyst precursor, the silica-supported monodentate phosphine Si-SMAP as the ligand, and B pin as the boron source. Initially, O-borylation of the quinoline tautomer takes place. Critically, the newly formed 4-(pinBO)-quinolines then undergo N-directed selective Ir-catalyzed borylation at C8.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are highly promising as heterogeneous photocatalysts due to their tunable structures and optoelectronic properties. Though COFs have been used as heterogeneous photocatalysts, they have mainly been employed in water splitting, carbon dioxide reduction, and hydrogen evolution reactions. A few examples in organic synthesis using metal-anchored COF photocatalysts were reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!