A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational identification of signals predictive for nuclear RNA exosome degradation pathway targeting. | LitMetric

Computational identification of signals predictive for nuclear RNA exosome degradation pathway targeting.

NAR Genom Bioinform

The Bioinformatics Centre, Department of Biology and Biotech and Research Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark.

Published: September 2022

The RNA exosome degrades transcripts in the nucleoplasm of mammalian cells. Its substrate specificity is mediated by two adaptors: the 'nuclear exosome targeting (NEXT)' complex and the 'poly(A) exosome targeting (PAXT)' connection. Previous studies have revealed some DNA/RNA elements that differ between the two pathways, but how informative these features are for distinguishing pathway targeting, or whether additional genomic features that are informative for such classifications exist, is unknown. Here, we leverage the wealth of available genomic data and develop machine learning models that predict exosome targets and subsequently rank the features the models use by their predictive power. As expected, features around transcript end sites were most predictive; specifically, the lack of canonical 3' end processing was highly predictive of NEXT targets. Other associated features, such as promoter-proximal G/C content and 5' splice sites, were informative, but only for distinguishing NEXT and not PAXT targets. Finally, we discovered predictive features not previously associated with exosome targeting, in particular RNA helicase DDX3X binding sites. Overall, our results demonstrate that nucleoplasmic exosome targeting is to a large degree predictable, and our approach can assess the predictive power of previously known and new features in an unbiased way.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477074PMC
http://dx.doi.org/10.1093/nargab/lqac071DOI Listing

Publication Analysis

Top Keywords

exosome targeting
16
rna exosome
8
pathway targeting
8
targeting rna
8
predictive power
8
exosome
7
features
7
predictive
6
targeting
6
computational identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!