Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introducing defects in polymeric carbon nitride (CN) in a predetermined way is a great challenge to explicate the effect of defects on the photocatalytic activity. Herein, we provide a pathway to synthesize g-CN with nitrogen defects by simply calcining melamine and trithiocyanuric acid at elevated temperature. Nitrogen defects at the N-bridging sites lead to an intermediate energy gap between the valence band and the conduction band, which greatly increases the photon absorption in the visible light range. Electron paramagnetic resonance (EPR) and photoluminescence (PL) verify that the significantly improved light utilization efficiency and rapid charge transfer correlate with nitrogen defects. The hydrogen evolution rate of 2SCN reached 41.4 μmol h, about 20.7 times that of pure g-CN, and its degradation rate for rhodamine B (RhB) is about 2.5 times that of CN. The experimental results proved that the photoinduced electron-hole pairs react with adsorbed O to form ˙O , facilitating the photodegradation of organic pollutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428898 | PMC |
http://dx.doi.org/10.1039/d2ra04928g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!