Lithium Toxicity With Lasting Mental Status Impairment.

Cureus

Family Medicine, AnMed Health, Anderson, USA.

Published: August 2022

A 49-year-old female taking lithium for bipolar affective disorder for over 20 years presented with lithium toxicity resulting in declining mentation. Lithium poisoning has been well documented to cause acute gastrointestinal, cardiac, and neurological side effects, along with long-term neurologic sequelae. There has, however, been scant discussion on the potential long-term effects on mentation. The following case report illustrates a possible example.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477549PMC
http://dx.doi.org/10.7759/cureus.28076DOI Listing

Publication Analysis

Top Keywords

lithium toxicity
8
lithium
4
toxicity lasting
4
lasting mental
4
mental status
4
status impairment
4
impairment 49-year-old
4
49-year-old female
4
female lithium
4
lithium bipolar
4

Similar Publications

Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.

View Article and Find Full Text PDF

Background: Lithium (Li) is widely used in the treatment of bipolar disorder, but it may lead to toxicity in the reproductive system. Considering the harmful effect of Li consumption on fertility and the positive effect of magnesium sulfate (MgSo) and moderate-intensity training (MIT) on improving the quality of men's sperm, the current research was conducted to determine the impact of MIT and MgSo on infertility caused by Li.

Materials And Methods: Seventy-two male rats were divided into 12 groups, control, Li10 mg/kg/day/ip, MgSo 80 mg/kg/day/ip; MIT; Li40 mg/kg/day/ip; Li10+MgSo; Li10+MIT; Li10+MgSo+MIT; Li40+MgSo; Li40+MIT; Li40+MgSo+MIT.

View Article and Find Full Text PDF

Airway exposure to lithium nickel manganese cobalt oxide particles induces alterations in lung microenvironment and potential kidney and liver damage in mice.

Toxicology

December 2024

Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China. Electronic address:

With the increasing use of lithium-ion batteries, the exposure and health effects of lithium nickel manganate cobalt (NMC), a popular cathode material for the battery, have attracted widespread attention. However, the main absorption routes and target organs of NMC are unknown. This study aims to systematically investigate the main absorption routes and target organs of NMC.

View Article and Find Full Text PDF

Li-rich Mn-based (LRM) cathode materials, characterized by their high specific capacity (>250 mAh g¹) and cost-effectiveness, represent promising candidates for next-generation lithium-ion batteries. However, their commercial application is hindered by rapid capacity degradation and voltage fading, which can be attributed to transition metal migration, lattice oxygen release, and the toxicity of Mn ions to the anode solid electrolyte interphase (SEI). Recently, the application of LRM cathode in all-solid-state batteries (ASSBs) has garnered significant interest, as this approach eliminates the liquid electrolyte, thereby suppressing transition metal crosstalk and solid-liquid interfacial side reactions.

View Article and Find Full Text PDF

Lithium-ion batteries have garnered significant attention owing to their exceptional energy density, extended lifespan, rapid charging capabilities, eco-friendly characteristics, and extensive application potential. These remarkable features establish them as a critical focus for advancing next-generation battery technologies. However, the commonly used organic liquid electrolytes in batteries are explosive, volatile, and possess specific toxic properties, resulting in persistent safety concerns that remain to be addressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!