Background: Giardia lamblia, a parasitic protist of the Metamonada supergroup, has evolved one of the most diverged endocytic compartment systems investigated so far. Peripheral endocytic compartments, currently known as peripheral vesicles or vacuoles (PVs), perform bulk uptake of fluid phase material which is then digested and sorted either to the cell cytosol or back to the extracellular space.
Results: Here, we present a quantitative morphological characterization of these organelles using volumetric electron microscopy and super-resolution microscopy (SRM). We defined a morphological classification for the heterogenous population of PVs and performed a comparative analysis of PVs and endosome-like organelles in representatives of phylogenetically related taxa, Spironucleus spp. and Tritrichomonas foetus. To investigate the as-yet insufficiently understood connection between PVs and clathrin assemblies in G. lamblia, we further performed an in-depth search for two key elements of the endocytic machinery, clathrin heavy chain (CHC) and clathrin light chain (CLC), across different lineages in Metamonada. Our data point to the loss of a bona fide CLC in the last Fornicata common ancestor (LFCA) with the emergence of a protein analogous to CLC (GlACLC) in the Giardia genus. Finally, the location of clathrin in the various compartments was quantified.
Conclusions: Taken together, this provides the first comprehensive nanometric view of Giardia's endocytic system architecture and sheds light on the evolution of GlACLC analogues in the Fornicata supergroup and, specific to Giardia, as a possible adaptation to the formation and maintenance of stable clathrin assemblies at PVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490929 | PMC |
http://dx.doi.org/10.1186/s12915-022-01402-3 | DOI Listing |
Unlabelled: The recycling of integrin endocytosed during focal adhesion (FA) disassembly is critical for cell migration and contributes to the polarized formation of new FAs toward the leading edge. How this occurs is unclear. Here, we sought to identify the kinesin motor protein(s) that is involved in recycling endocytosed integrin back to the plasma membrane.
View Article and Find Full Text PDFCell Biosci
December 2024
Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy.
Background: The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway.
View Article and Find Full Text PDFJ Biol Chem
December 2024
School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen. Electronic address:
The formyl-peptide receptor 2 (FPR2) is a G-protein-coupled receptor (GPCR) that responds to pathogen-derived peptides and regulates both pro-inflammatory and pro-resolution cellular processes. While ligand selectivity and G-protein-signalling of FPR2 have been well characterized, molecular mechanisms controlling subsequent events such as endocytosis and recycling to the plasma membrane are less understood. Here we show the key role of the GPCR kinase 5 (GRK5) in facilitating FPR2 endocytosis and post-endocytic trafficking.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO.
Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase.
View Article and Find Full Text PDFActa Neuropathol
December 2024
Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.
In Alzheimer's disease (AD), the propagation and spreading of CNS tau pathology closely correlates with cognitive decline, positioning tau as an attractive therapeutic target. Amyloid beta (Aβ) has been strongly implicated in driving tau spread, whereas primary tauopathies such as primary age-related tauopathy (PART)-which lack Aβ pathology-exhibit limited tau spread and minimal-to-no cognitive decline. Emerging evidence converges on a trans-synaptic mechanism of tau spread, facilitated by the transfer of misfolded tau aggregates (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!