Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Each year, millions of Americans receive evidence-based psychotherapies (EBPs) like cognitive behavioral therapy (CBT) for the treatment of mental and behavioral health problems. Yet, at present, there is no scalable method for evaluating the quality of psychotherapy services, leaving EBP quality and effectiveness largely unmeasured and unknown. Project AFFECT will develop and evaluate an AI-based software system to automatically estimate CBT fidelity from a recording of a CBT session. Project AFFECT is an NIMH-funded research partnership between the Penn Collaborative for CBT and Implementation Science and Lyssn.io, Inc. ("Lyssn") a start-up developing AI-based technologies that are objective, scalable, and cost efficient, to support training, supervision, and quality assurance of EBPs. Lyssn provides HIPAA-compliant, cloud-based software for secure recording, sharing, and reviewing of therapy sessions, which includes AI-generated metrics for CBT. The proposed tool will build from and be integrated into this core platform.
Methods: Phase I will work from an existing software prototype to develop a LyssnCBT user interface geared to the needs of community mental health (CMH) agencies. Core activities include a user-centered design focus group and interviews with community mental health therapists, supervisors, and administrators to inform the design and development of LyssnCBT. LyssnCBT will be evaluated for usability and implementation readiness in a final stage of Phase I. Phase II will conduct a stepped-wedge, hybrid implementation-effectiveness randomized trial (N = 1,875 clients) to evaluate the effectiveness of LyssnCBT to improve therapist CBT skills and client outcomes and reduce client drop-out. Analyses will also examine the hypothesized mechanism of action underlying LyssnCBT.
Discussion: Successful execution will provide automated, scalable CBT fidelity feedback for the first time ever, supporting high-quality training, supervision, and quality assurance, and providing a core technology foundation that could support the quality delivery of a range of EBPs in the future.
Trial Registration: ClinicalTrials.gov; NCT05340738 ; approved 4/21/2022.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487132 | PMC |
http://dx.doi.org/10.1186/s12913-022-08519-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!