A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing the quality of cognitive behavioral therapy in community mental health through artificial intelligence generated fidelity feedback (Project AFFECT): a study protocol. | LitMetric

AI Article Synopsis

  • Millions of Americans access evidence-based psychotherapies like cognitive behavioral therapy (CBT), but there's currently no effective way to measure the quality of these services.
  • Project AFFECT aims to create an AI-based software tool that can assess CBT fidelity from recorded therapy sessions, enhancing training and quality oversight.
  • The project involves designing the software for community mental health agencies and will conduct a large study to evaluate its impact on therapist skills and client outcomes.

Article Abstract

Background: Each year, millions of Americans receive evidence-based psychotherapies (EBPs) like cognitive behavioral therapy (CBT) for the treatment of mental and behavioral health problems. Yet, at present, there is no scalable method for evaluating the quality of psychotherapy services, leaving EBP quality and effectiveness largely unmeasured and unknown. Project AFFECT will develop and evaluate an AI-based software system to automatically estimate CBT fidelity from a recording of a CBT session. Project AFFECT is an NIMH-funded research partnership between the Penn Collaborative for CBT and Implementation Science and Lyssn.io, Inc. ("Lyssn") a start-up developing AI-based technologies that are objective, scalable, and cost efficient, to support training, supervision, and quality assurance of EBPs. Lyssn provides HIPAA-compliant, cloud-based software for secure recording, sharing, and reviewing of therapy sessions, which includes AI-generated metrics for CBT. The proposed tool will build from and be integrated into this core platform.

Methods: Phase I will work from an existing software prototype to develop a LyssnCBT user interface geared to the needs of community mental health (CMH) agencies. Core activities include a user-centered design focus group and interviews with community mental health therapists, supervisors, and administrators to inform the design and development of LyssnCBT. LyssnCBT will be evaluated for usability and implementation readiness in a final stage of Phase I. Phase II will conduct a stepped-wedge, hybrid implementation-effectiveness randomized trial (N = 1,875 clients) to evaluate the effectiveness of LyssnCBT to improve therapist CBT skills and client outcomes and reduce client drop-out. Analyses will also examine the hypothesized mechanism of action underlying LyssnCBT.

Discussion: Successful execution will provide automated, scalable CBT fidelity feedback for the first time ever, supporting high-quality training, supervision, and quality assurance, and providing a core technology foundation that could support the quality delivery of a range of EBPs in the future.

Trial Registration: ClinicalTrials.gov; NCT05340738 ; approved 4/21/2022.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487132PMC
http://dx.doi.org/10.1186/s12913-022-08519-9DOI Listing

Publication Analysis

Top Keywords

community mental
12
mental health
12
project affect
12
cognitive behavioral
8
behavioral therapy
8
fidelity feedback
8
cbt fidelity
8
training supervision
8
supervision quality
8
quality assurance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!