Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41577-022-00774-5 | DOI Listing |
Ocul Immunol Inflamm
January 2025
Universiti Malaya Eye Research Centre (UMERC), Department of Ophthalmology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
Purpose: To shed light on one of the ocular adverse effects related to pembrolizumab.
Method: Case report and literature review.
Result: A 53-year-old gentleman with underlying Stage III B renal cell carcinoma with lung metastasis and gout presented in June 2021 with bilateral red eyes following Coronavirus disease (COVID-19) vaccination.
J Clin Oncol
January 2025
Center for Cell Engineering, Sloan Kettering Institute, New York, NY.
Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA.
Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.
Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!