Predicting demographics from meibography using deep learning.

Sci Rep

Vision Science Graduate Group, Herbert Wertheim School of Optometry and Vision Science, University of California, 360 Minor Hall, MC#2020, Berkeley, CA, 94720-2020, USA.

Published: September 2022

This study introduces a deep learning approach to predicting demographic features from meibography images. A total of 689 meibography images with corresponding subject demographic data were used to develop a deep learning model for predicting gland morphology and demographics from images. The model achieved on average 77%, 76%, and 86% accuracies for predicting Meibomian gland morphological features, subject age, and ethnicity, respectively. The model was further analyzed to identify the most highly weighted gland morphological features used by the algorithm to predict demographic characteristics. The two most important gland morphological features for predicting age were the percent area of gland atrophy and the percentage of ghost glands. The two most important morphological features for predicting ethnicity were gland density and the percentage of ghost glands. The approach offers an alternative to traditional associative modeling to identify relationships between Meibomian gland morphological features and subject demographic characteristics. This deep learning methodology can currently predict demographic features from de-identified meibography images with better than 75% accuracy, a number which is highly likely to improve in future models using larger training datasets, which has significant implications for patient privacy in biomedical imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489726PMC
http://dx.doi.org/10.1038/s41598-022-18933-yDOI Listing

Publication Analysis

Top Keywords

morphological features
20
deep learning
16
gland morphological
16
meibography images
12
demographic features
8
subject demographic
8
meibomian gland
8
features subject
8
predict demographic
8
demographic characteristics
8

Similar Publications

Exploring the characteristics of detrusor after contraction in females with pure urodynamic stress incontinence.

BMC Urol

January 2025

Department of Urology and Institute of Urology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China.

Purpose: This study aims to evaluate detrusor after contraction (DAC) characteristics in females with pure urodynamic stress incontinence (USI).

Methods: We examined the urodynamics database from our urodynamic study center. Urodynamic data from pure USI cases with and without DAC were compared.

View Article and Find Full Text PDF

Cannabis trichome development progresses in distinct phases that underpin the dynamic biosynthesis of cannabinoids and terpenes. This study investigates the molecular mechanisms underlying cannabinoid and terpenoid biosynthesis in glandular trichomes of Cannabis sativa (CsGTs) throughout their development. Female Cannabis sativa c.

View Article and Find Full Text PDF

Electron Tomography of Organelles and Vesicles in the Investigation of SNARE Function and Localization.

Methods Mol Biol

January 2025

Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, Cambridge, UK.

Electron tomography can provide additional morphological information not easily obtained by conventional transmission electron microscopy of thin sections. It uses a goniometer stage in the electron microscope to tilt the specimen and collect a series of 2D images from different orientations, which are combined to provide a 3D volume tomogram and a colored reconstruction of the morphological feature(s) of interest. Here we describe the protocols for its use in visualizing changes in organelle morphology after depletion of the SNARE proteins VAMP7 and VAMP8 and to study VAMP7 localization on endolysosomes/lysosomes.

View Article and Find Full Text PDF

Oncogenic role of RARG rearrangements in acute myeloid leukemia resembling acute promyelocytic leukemia.

Nat Commun

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.

View Article and Find Full Text PDF

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!