AI Article Synopsis

  • Circular RNAs (circRNAs), particularly circ_0003215, are emerging as important biomarkers for colorectal cancer (CRC) and have been found at low levels in CRC tumors, correlating with poorer outcomes.
  • Circ_0003215 negatively regulates cancer cell proliferation, migration, and invasion by sponging miR-663b, which influences the expression of DLG4 and impacts metabolic pathways.
  • The mechanism involves DLG4 inhibiting the pentose phosphate pathway (PPP) through the ubiquitination of glucose-6-phosphate dehydrogenase (G6PD), highlighting circ_0003215's role in cancer-related metabolic reprogramming.

Article Abstract

Circular RNAs (circRNAs) are a recently discovered kind of regulatory RNAs that have emerged as critical biomarkers of various types of cancers. Metabolic reprogramming has gradually been identified as a distinct hallmark of cancer cells. The pentose phosphate pathway (PPP) plays an indispensable role in satisfying the bioenergetic and biosynthetic demands of cancer cells. However, little is known about the role of circRNAs and PPP in colorectal cancer (CRC). The novel circ_0003215 was identified at low levels in CRC and was negatively correlated with larger tumor size, higher TNM stage, and lymph node metastasis. The decreased level of circ_0003215 was resulted from the RNA degradation by m6A writer protein YTHDF2. A series of functional assays demonstrated that circ_0003215 inhibited cell proliferation, migration, invasion, and CRC tumor metastasis in vivo and in vitro. Moreover, circ_0003215 regulated the expression of DLG4 via sponging miR-663b, thereby inducing the metabolic reprogramming in CRC. Mechanismly, DLG4 inhibited the PPP through the K48-linked ubiquitination of glucose-6-phosphate dehydrogenase (G6PD). Taken together, we have identified m6A-modified circ_0003215 as a novel regulator of metabolic glucose reprogramming that inhibited the PPP and the malignant phenotype of CRC via the miR-663b/DLG4/G6PD axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489788PMC
http://dx.doi.org/10.1038/s41419-022-05245-2DOI Listing

Publication Analysis

Top Keywords

pentose phosphate
8
phosphate pathway
8
colorectal cancer
8
mir-663b/dlg4/g6pd axis
8
metabolic reprogramming
8
cancer cells
8
inhibited ppp
8
circ_0003215
6
crc
5
n6-methyladenosine modification
4

Similar Publications

Engineering Yarrowia lipolytica for the production of β-carotene by carbon and redox rebalancing.

J Biol Eng

January 2025

Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.

Background: β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.

View Article and Find Full Text PDF

Background: Noise-induced hearing loss (NIHL) is a kind of acquired sensorineural hearing loss and has shown an increasing incidence in recent years. Hence, elucidating the exact pathophysiological mechanisms and proposing effective treatment and prevention methods become the top priority. Though a great number of researches have been carried out on NIHL, few of them were focused on metabolites.

View Article and Find Full Text PDF

Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies.

Tissue Cell

January 2025

Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil. Electronic address:

Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Skin cancer is one of the most prevalent malignancies in the world, with increasing incidence. In 2022, the World Health Organization estimated over 1.5 million new diagnoses of skin malignancies, primarily affecting the older population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!