Small-animal irradiators are widely used in oncologic research, and many experiments use mice to mimic radiation treatments in humans. To improve fractionated high-precision irradiation in mice with orthotopic pancreatic tumors, we evaluated 3 positioning methods: no positioning aid, skin marker, and immobilization devices (immobilization masks). We retrospectively evaluated the translation vector needed for optimal tumor alignment (by shifting the mouse in left-right, in cranio-caudal, and in anterior-posterior direction) on cone-beam CT from our small-animal radiotherapy system. Of the 3 methods, the skin marker method yielded the smallest mean translation vector (3.8 mm) and was the most precise method overall for most of the mice. In addition, the skin marker method required supplemental rotation (that is, roll, pitch, and yaw) for optimal tumor alignment only half as often as positioning without a positioning aid. Finally, the skin marker method had the highest scores for the quality of the fusion results. Overall, we preferred the skin marker method over the other 2 positioning methods with regard to optimal treatment planning and radiotherapy in an orthotopic mouse model of pancreatic cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827594 | PMC |
http://dx.doi.org/10.30802/AALAS-CM-22-000060 | DOI Listing |
Bioact Mater
May 2025
Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
Skin serves as the first-order protective barrier against the environment and any significant disruptions in skin integrity must be promptly restored. Despite significant advances in therapeutic strategies, effective management of large chronic skin wounds remains a clinical challenge. Dermal fibroblasts are the primary cell type responsible for remodeling the extracellular matrix (ECM) in wound healing.
View Article and Find Full Text PDFSmall Methods
January 2025
Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland.
The bioengineering of vascular networks is pivotal to create complex tissues and organs for regenerative medicine applications. However, bioengineered tissues comprising an arterial and venous plexus alongside a lymphatic capillary network have not been explored yet. Here, scRNA-seq is first employed to investigate the arterio-venous endothelial cell marker patterning in human fetal and juvenile skin.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Anesthesiology, Zhongda hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing City, 210009, Jiangsu Province, China.
Monitoring perioperative tissue perfusion is crucial in clinical anesthesia to protect organs and ensure patient safety. Indicators like hemodynamic parameters, tissue metabolism, and microcirculation markers are used for assessment. Studies show intraoperative hypotension negatively impacts outcomes, though blood pressure alone may not reflect tissue perfusion accurately.
View Article and Find Full Text PDFEcohealth
January 2025
Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.
Chytridiomycosis is a wildlife disease that has caused significant declines in amphibian populations and species extinctions worldwide. Asia, where the causal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamndrivorans (Bsal) originated, has not witnessed mass die-offs.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Rheumatology and Immunology, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China.
Breast invasive carcinoma (BRCA) affects women worldwide, and despite advancements in diagnosis, prevention, and treatment, outcomes remain suboptimal. TNIP1, a novel target involved in multiple immune signaling pathways, influences tumor development and survival. However, the connection between BRCA and TNIP1 remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!