Ovarian transcriptome and metabolic responses of RNAi-mediated farnesyl pyrophosphate synthase knockdown in Neocaridina denticulata sinensis.

Genomics

School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China. Electronic address:

Published: November 2022

Methyl farnesoate (MF) is considered the equivalent of JH in crustaceans and plays an essential role in many crucial physiological processes. It is believed that farnesyl pyrophosphate synthase (FPPS) plays an essential role in the biosynthesis of mevalonate, which is a branch of the JH/MF pathway. The full-length cDNA of FPPS (NdFPPS) from Neocaridina denticulata sinensis was isolated and characterized, and the deduced amino acid of NdFPPS contained a polyprenyl_synt domain. In addition to its ubiquitous tissue expression, NdFPPS was significantly expressed in the ovary. In vivo gene silencing with dsRNA interference was performed to further investigate the function of NdFPPS. An ovarian transcriptomic analysis of dsNdFPPS experimental and control groups was used to compare, annotate, and classify differentially expressed genes (DEGs). A total of 9230 DEGs were identified in the experimental and control groups based on FPKM values, of which 5082 were up-regulated genes and 4148 were down-regulated genes. 761 GO terms and 102 KEGG pathways were enriched for the DEGs. Our results suggest that NdFPPS might play an important role in ovarian development, however, further functional study is needed to elucidate physiological role of NdFPPS in reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2022.110484DOI Listing

Publication Analysis

Top Keywords

farnesyl pyrophosphate
8
pyrophosphate synthase
8
neocaridina denticulata
8
denticulata sinensis
8
plays essential
8
essential role
8
experimental control
8
control groups
8
ndfpps
6
ovarian transcriptome
4

Similar Publications

Background/purpose: Peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor of energy metabolism-associated genes, and three PPARγ isoforms have been identified in periodontal tissues and cells. When energy metabolism homeostasis is affected by PPARγ downregulation in periodontal ligament fibroblasts (PDLFs), osteo/cementogenic abilities are markedly lost. Herein, we investigated whether PPARγ agonists promote periodontal tissue regeneration, and which PPARγ isoforms and metabolic pathways are indispensable for osteo/cementogenic abilities.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Profile of () Gene Family in L.

Int J Mol Sci

January 2025

State Key Laboratory of Tropical Crop Breeding, Sanya Institute, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China.

The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein () plays a pivotal role. This study identified eight members of the FPS gene family in , designated -, through bioinformatics analysis, revealing their distribution across several chromosomes and a notable tandem gene cluster. The genes exhibited strong hydrophilic properties and key functional motifs crucial for enzyme activity.

View Article and Find Full Text PDF

Background: Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.

View Article and Find Full Text PDF

Transcriptomic Analysis of Gills Following FPPS Knockdown Reveals Its Regulatory Role in Immune Response.

Int J Mol Sci

December 2024

School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.

Farnesyl pyrophosphate synthase (FPPS) is a key enzyme in the terpenoid biosynthesis pathway, responsible for converting isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) into farnesyl pyrophosphate (FPP). In crustaceans, FPPS plays an important role in various physiological processes, particularly in synthesizing the crustacean-specific hormone methyl farnesoate (MF). This study analyzed the evolutionary differences in the physicochemical properties, subcellular localization, gene structure, and motif composition of FPPS in (named NdFPPS) compared to other species.

View Article and Find Full Text PDF

The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!