MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597889 | PMC |
http://dx.doi.org/10.1016/j.jbc.2022.102505 | DOI Listing |
J Enzyme Inhib Med Chem
December 2025
Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
The function of many DNA processing enzymes involves sliding along the double helix or individual DNA strands. Stable secondary structures in the form of G-quadruplexes are difficult for such enzymes to bypass. We used a polymerase stop assay to determine which structural features of the human telomeric and the BCL2 promoter G-quadruplexes can stall progression of the Klenow fragment.
View Article and Find Full Text PDFCommun Biol
December 2024
Seattle Structural Genomics Center for Infectious Disease, 307 Westlake Avenue North, Seattle, WA, 98109, USA.
Griselimycin, a cyclic depsidecapeptide produced by Streptomyces griseus, is a promising lead inhibitor of the sliding clamp component of bacterial DNA polymerases (β-subunit of Escherichia coli DNA pol III). It was previously shown to inhibit the Mycobacterium tuberculosis β-clamp with remarkably high affinity and selectivity - the peptide lacks any interaction with the human sliding clamp. Here, we used a structural genomics approach to address the prospect of broader-spectrum inhibition, in particular of β-clamps from Gram-negative bacterial targets.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA.
DNA supercoiling significantly influences DNA metabolic pathways. To examine its impact on DNA-protein interactions at the single-molecule level, we developed a highly efficient and reliable protocol to modify plasmid DNA at specific sites, allowing us to label plasmids with fluorophores and biotin. We then induced negative and positive supercoiling in these plasmids using gyrase and reverse gyrase, respectively.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
During replication, lagging strand lesions are initially encountered by high-fidelity DNA polymerase (pol) holoenzymes comprised of pol δ and the PCNA sliding clamp. To proceed unhindered, pol δ holoenzymes must bypass lesions without stalling. This entails dNMP incorporation opposite the lesion (insertion) and the 5' template nucleotide (extension).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!