Comparison of different S-doped biochar materials to activate peroxymonosulfate for efficient degradation of antibiotics.

Chemosphere

School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China. Electronic address:

Published: December 2022

The goal of this work was to elucidate the ability of biochar materials prepared by different methods to degrade antibiotics by activating peroxymonosulfate (PMS). S atom was doped into biochar using diphenyl disulfide (DD), sodium thiosulfate (ST), and thiourea (TU) as S precursors. The different doped materials were used to activate PMS and tested for the ability to degrade tetracycline hydrochloride, sulfadiazine sodium salt, and levofloxacin hydrochloride. The average degradation efficiencies of DD-doped hydrothermal + pyrocarbon (DD-HPBC), TU-doped hydrothermal + pyrocarbon (TU-HPBC), and ST-doped hydrothermal + pyrocarbon (ST-HPBC) were 83.76%, 86.74%, and 93.60%, respectively, all higher than the degradation efficiency of the undoped material. When sodium thiosulfate-doped pyrocarbon (ST-PBC), hydrochar (ST-HBC), and hydrothermal + pyrocarbon (ST-HPBC) were used to activate PMS, the highest degradation efficiencies were achieved, with average rates of 71.59%, 78.22% and 97.20%, respectively. ST-HPBC exhibited the highest concentration of environmentally persistent free radicals (EPFRs), 9.47 × 10 spin/g, among all biochar materials. Given this high concentration of EPFRs, use of ST-HPBC to activate PMS resulted in a very high rate of antibiotic degradation, and the concentration of EPFRs was positively correlated with the degradation efficiency. Increase of specific surface area, the thiophene S (-C-S-C-) ratio, and concentration of EPFRs in S-doped biochars promoted the degradation of antibiotics. For PMS activated by biochar, reactive oxygen species (ROS) degraded antibiotics in the order of sulfate radical (SO) > singlet oxygen (O) > hydroxyl radical (•OH) > superoxide radical (•O). This work provides new insight into the application of S-doped sludge biochar materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136442DOI Listing

Publication Analysis

Top Keywords

biochar materials
16
activate pms
12
concentration epfrs
12
materials activate
8
degradation antibiotics
8
degradation efficiencies
8
hydrothermal + pyrocarbon st-hpbc
8
degradation efficiency
8
st-hpbc activate
8
degradation
7

Similar Publications

Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.

View Article and Find Full Text PDF

Differentiated effects and mechanisms of N-, P-, S-, and Fe-modified biochar materials for remediating Cd- and Pb-contaminated calcareous soil.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.

To investigate the remediation effects of various modified biochar materials derived from different impregnation agents on Cd- and Pb-contaminated calcareous soil, nitrogen (N-), phosphorus (P-), sulfur (S-), and iron (Fe-) modified biochar materials (NBC, PBC, SBC, FBC) were fabricated through the impregnation-pyrolysis method and employed to immobilize Pb and Cd in the calcareous soil. The characterization results showed that NBC exhibited an uneven pore size distribution and increased aromaticity, while PBC and SBC had increased pH and ash content. Pot experiments demonstrated significantly different effects of various modified biochar materials on soil immobilization and plant uptake of Cd and Pb.

View Article and Find Full Text PDF

The main aim of the study was to develop new fruit waste-derived activated carbons of high adsorption performance towards metals, metalloids, and polymers by the use of carbon dioxide (CO)-consuming, microwave-assisted activation. The authors compared morphology, surface chemistry, textural parameters, and elemental composition of precursors (chokeberry seeds, black currant seeds, orange peels), as well as biochars (BCs) and activated carbons (ACs) obtained from them. The adsorption mechanisms of metals (copper, cadmium), metalloids (arsenic, selenium), and macromolecular compounds (bacterial exopolysaccharide, ionic polyacrylamides) on the surface of selected materials were investigated in one- and two-component systems.

View Article and Find Full Text PDF

Hexavalent chromium (Cr(VI)) contamination in soil presents significant risks due to its high toxicity to both the environment and human health. Renewable, low-cost natural materials offer promising solutions for Cr(VI) reduction and soil remediation. However, the effects of unmodified tea leaves and tea-derived biochar on chromium-contaminated soils remain inadequately understood.

View Article and Find Full Text PDF

Existing studies have demonstrated the positive effects of nano-sized iron oxide on compost maturity, yet the impact of nano-sized iron oxide on phosphorus speciation and bacterial communities during the composting process remains unclear. In this study, pig manure and straw were used as raw materials, with biochar-supported nano-sized iron oxide (BC-FeONPs) as an additive and calcium peroxide (CaO) as a co-agent, to conduct an aerobic composting experiment with pig manure. Four treatments were tested: CK (control), F1 (1% BC-FeONPs), F2 (5% BC-FeONPs), and F3 (5% BC-FeONPs + 5% CaO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!