A novel photoelectrochemical (PEC) biosensor based on b-TiO/CdS:Eu/TiC heterojunction was developed for ultrasensitive determination of miRNA-21. In this device, the b-TiO/CdS:Eu/TiC heterojunction with excellent energy level arrangement effectively facilitated photoelectric conversion efficiency and accelerated the separation of the photogenerated electron hole pairs, which because that the structure of heterojunction overcomes the drawbacks of single material, such as narrow light absorption range, wide band gap, short carrier lifetime, etc., improves light utilization, extends the lifetime of photogenerated electron hole pairs, and promotes electron transfer. Herein, hairpin DNA1 (H1) decorated on the b-TiO/CdS:Eu/TiC electrode surface by Cd-S bonds, after H2/miRNA-21 heterduplex was introduced, the strand-displacement reaction (SDR) was triggered between H1 and H2/miRNA-21, accordingly, miRNA-21 was discharged from the H2/miRNA-21 heterduplex, forming the H1/H2 duplex, and the reuse of miRNA-21 was realized. As a signal amplification factor, the signal amplification factor H3-CdSe was hybridized with H1/H2 duplex, which greatly enhanced the sensitivity of the PEC biosensor. Under optimal conditions, the designed PEC biosensor displayed outstanding sensitivity, selectivity and stability with a wide liner range from 1.0 μM to 10.0 fM and a low detection limit of 3.3 fM. The preparation of the optoelectronic material affords a new direction for the progress of heterojunction photovoltaic materials and the construction of the proposed biosensor also provides a new thought for the PEC detection of human miRNA-21 with superior performance. Simultaneously, the established biosensor exhibiting tremendous possibility for detecting other biomarkers and biomolecules in clinical diagnosis fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2022.123601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!