Background: Diffusion microstructure imaging (DMI) is a fast approach to higher-order diffusion-weighted magnetic resonance imaging that allows robust decomposition and characterization of diffusion properties of brain tissue into intra-axonal, extra-axonal, and a free water-compartment. We now report the application of this technique to acute ischemic stroke and demonstrate its potential applicability to the daily clinical routine.
Methods: Thirty-eight patients diagnosed with acute ischemic stroke were scanned using an accelerated multi-shell diffusion-weighted imaging protocol (median delay between onset and MRI scan of 113 min). DMI metrics were calculated and the apparent diffusion coefficient (ADC) derived from conventional diffusion-weighted imaging was used for comparison. The resulting DMI parameter maps were analysed for their potential to improve infarct core delineation, and a receiver-operating characteristic (ROC) analysis was subsequently performed for automated infarct segmentation.
Results: Robust parameter maps for diffusion microstructure properties were obtained in all cases. Within the ischemic tissue, an increase in the volume fraction of the intra-axonal compartment was accompanied by a volume fraction reduction in the other two compartments. Moreover, diffusivity was reduced in all three compartments, with intra-axonal diffusivity showing the highest degree of contrast. The intra-axonal diffusion coefficient maps were subsequently found to perform better than single-shell ADC-derived segmentation in terms of automatic segmentation of the infarct core (area under the curve = 0.98 vs 0.92).
Conclusions: The alterations to the ischemic core detected by DMI are in line with the "beading-model" of non-uniform neurite swelling under ischemic conditions. When compared to conventional single-shell diffusion-weighted imaging, DMI metrics are associated with improved discriminative power for delineating and characterizing ischemic changes. This might allow a more detailed assessment of infarct age, severity of damage, the degree of reversibility, and outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486659 | PMC |
http://dx.doi.org/10.1016/j.nicl.2022.103189 | DOI Listing |
Sci Rep
December 2024
Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
Chronic ischemia in moyamoya disease (MMD) impaired white matter microstructure and neural functional network. However, the coupling between cerebral blood flow (CBF) and functional connectivity and the association between structural and functional network are largely unknown. 38 MMD patients and 20 sex/age-matched healthy controls (HC) were included for T1-weighted imaging, arterial spin labeling imaging, resting-state functional MRI and diffusion tensor imaging.
View Article and Find Full Text PDFNeuroimage
December 2024
Institute of Population Health, University of Liverpool, United Kingdom; Hanse Wissenschaftskolleg, Delmenhorst, Germany. Electronic address:
Recent work has shown rapid microstructural brain changes in response to learning new tasks. These cognitive tasks tend to draw on multiple brain regions connected by white matter (WM) tracts. Therefore, behavioural performance change is likely to be the result of microstructural, functional activation, and connectivity changes in extended neural networks.
View Article and Find Full Text PDFSemin Arthritis Rheum
December 2024
Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China. Electronic address:
Objective: The study aimed to investigate the damage of white matter (WM) microstructure and structural network in patients with systemic lupus erythematosus (SLE) using diffusion tensor imaging.
Methods: Tract-based spatial statistics (TBSS) were used to compare the difference in WM fractional anisotropy (FA) between SLE and HCs groups. The differences in WM networks between groups are compared using graph theory.
Curr Oncol
December 2024
Neurosurgery Unit, Head-Neck and NeuroSciences Department University Hospital of Udine, 33100 Udine, Italy.
Background: Tractography allows the in vivo study of subcortical white matter, and it is a potential tool for providing predictive indices on post-operative outcomes. We aim at establishing whether there is a relation between cognitive outcome and the status of the inferior fronto-occipital fasciculus's (IFOF's) microstructure.
Methods: The longitudinal neuropsychological data of thirty young (median age: 35 years) patients operated on for DLGG in the left temporo-insular cortex along with pre-surgery tractography data were processed.
Adv Mater
December 2024
Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
The realization of low thermal conductivity at high temperatures (0.11 W m K 800 °C) in ambient air in a porous solid thermal insulation material, using stable packed nanoparticles of high-entropy spinel oxide with 8 cations (HESO-8 NPs) with a relatively high packing density of ≈50%, is reported. The high-density HESO-8 NP pellets possess around 1000-fold lower thermal diffusivity than that of air, resulting in much slower heat propagation when subjected to a transient heat flux.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!