Blockade of lysophosphatidic acid receptor 5 (LPA5) by a recently reported antagonist AS2717638 (2) attenuated inflammatory and neuropathic pains, although it showed moderate in vivo efficacy and its structure-activity relationships and the ADME properties are little studied. We therefore designed and synthesized a series of isoquinolone derivatives and evaluated their potency in LPA5 calcium mobilization and cAMP assays. Our results show that substituted phenyl groups or bicyclic aromatic rings such as benzothiophenes or benzofurans are tolerated at the 2-position, 4-substituted piperidines are favored at the 4-position, and methoxy groups at the 6- and 7-positions are essential for activity. Compounds 65 and 66 showed comparable in vitro potency, excellent selectivity against LPA1-LPA4 and >50 other GPCRs, moderate metabolic stability, and high aqueous solubility and brain permeability. Both 65 and 66 significantly attenuated nociceptive hypersensitivity at lower doses than 2 and had longer-lasting effects in an inflammatory pain model, and 66 also dose-dependently reduced mechanical allodynia in the chronic constriction injury model and opioid-induced hyperalgesia at doses that had no effect on the locomotion in rats. These results suggest that these isoquinolone derivatives as LPA5 antagonists are of promise as potential analgesics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155261PMC
http://dx.doi.org/10.1016/j.ejmech.2022.114741DOI Listing

Publication Analysis

Top Keywords

isoquinolone derivatives
12
lysophosphatidic acid
8
acid receptor
8
receptor lpa5
8
lpa5 antagonists
8
structure-activity relationships
8
relationships adme
8
adme properties
8
derivatives lysophosphatidic
4
lpa5
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!