Basil (, cv. Dolly) grew under three different light spectra (A, B, and C) created by light-emitting diode lamps. The proportions of UV-A, blue, and green-yellow wavelengths decreased linearly from A to C, and the proportions of red and far-red wavelengths increased from A to C. Photosynthetic photon flux density was 300 μmol m s in all spectra. The spectrum C plants had highest concentrations of phenolic acids (main compounds: rosmarinic acid and cichoric acid), lowest concentrations and emissions of phenylpropanoid eugenol and terpenoids (main compounds: linalool and 1,8-cineole), highest dry weight, and lowest water content. Conversely, spectra A and B caused higher terpenoid and eugenol concentrations and emissions and lower concentrations of phenolic acids. High density of peltate glandular trichomes explained high terpenoid and eugenol concentrations and emissions. Basil growth and secondary compounds affecting aroma and taste can be modified by altering light spectra; however, increasing terpenoids and phenylpropanoids decreases phenolic acids and growth and vice versa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545148PMC
http://dx.doi.org/10.1021/acs.jafc.2c03309DOI Listing

Publication Analysis

Top Keywords

phenolic acids
16
light spectra
12
concentrations emissions
12
concentrations phenolic
8
main compounds
8
terpenoid eugenol
8
eugenol concentrations
8
spectra
5
concentrations
5
alteration light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!