Background/aims: Mercury (Hg) is a heavy metal widespread in all environmental compartments as one of the most hazardous pollutants. Human exposure to this natural element is detrimental for several cellular types including erythrocytes (RBC) that accumulate Hg mainly bound to the SH groups of different cellular components, including protein cysteine residues. The cellular membrane represents a major target of Hg-induced damage in RBC with loss of physiological phospholipid asymmetry, due to phosphatidylserine (PS) exposure to the external membrane leaflet. To investigate Hg-induced cytotoxicity at the molecular level, the possible interaction of this heavy metal with RBC membrane proteins was investigated. Furthermore, Hg-induced alterations in band 3 protein (B3p) transport function, PS-exposing macrovesicle (MVs) formation and morphological changes were assessed.
Methods: For this aim, human RBC were treated in vitro with different HgCl concentrations (range 10-40 µM) and the electrophoretic profile of membrane proteins as well as the expression levels of Ankyrin and Flottilin-2 evaluated by SDS-PAGE and Western blot, respectively. The effect of alterations in these proteins on RBC morphology was evaluated by digital holographic microscopy and anionic transport efficiency of B3p was evaluated as sulphate uptake. Finally, PS- bearing MVs were quantified by annexin-V binding using FACS analysis.
Results: Findings presented in this paper indicate that RBC exposure to HgCl induces modifications in the electrophoretic profile of membrane protein fraction. Furthermore, our study reveals the Hg induced alterations of specific membrane proteins, such as Ankyrin, a protein essential for membrane-cytoskeleton linkage and Flotillin-2, a major integral protein of RBC lipid rafts, likely responsible for decreased membrane stability and increased fragmentations. Accordingly, under the same experimental conditions, RBC morphological changes and PS-bearing MVs release are observed. Finally, RBC treatment significantly affects the B3p-mediated anionic transport, that we report reduced upon HgCl treatment in a dose dependent manner.
Conclusion: Altogether, the findings reported in this paper confirm that RBC are particularly vulnerable to Hg toxic effect and provide new insight in the Hg-induced protein modification in human RBC affecting the complex biological system of cellular membrane. In particular, Hg could induce dismantle of vertical cohesion between the plasma membrane and cytoskeleton as well as destabilization of lateral linkages of functional domains. Consequently, decreased membrane deformability could impair RBC capacity to deal with the shear forces in the circulation increasing membrane fragmentations. Furthermore, findings described in this paper have also significant implication in RBC physiology, particularly related to gas exchanges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33594/000000572 | DOI Listing |
J Infect Dev Ctries
December 2024
Department of Gastroenterology, Pamukkale University School of Medicine, Denizli,Turkey.
Introduction: This study investigated the role of fibroblast growth factor 23 (FGF23)/Klotho in the mortality of patients hospitalized with coronavirus disease 2019 (COVID-19), excluding those with chronic kidney disease (CKD).
Methodology: A prospective cross-sectional study was conducted from April 2021 to May 2022. Patients who tested positive for COVID-19 via polymerase chain reaction and were hospitalized, were classified into two groups (survivors and non-survivors) at the end of their hospital follow-up.
Biophys J
January 2025
Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:
Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Biology, New York University, New York, New York, 10003, USA. Electronic address:
The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!