The Paternò-Büchi (PB) reaction is a cycloaddition reaction between a carbon-carbon double bond (C═C) and a photochemically excited carbonyl-containing compound. The constrained ring formed between the C═C bond and the PB reagent is more susceptible to fragmentation by collision-induced dissociation, which facilitates identification of the C═C position within the fatty acyl tails of lipids. Although the original PB reaction using acetone had a low yield of derivatized lipids and therefore a low yield of diagnostic ions, a new generation of PB reagents based on halogenated acetophenones has improved the reaction yield substantially. In this study, we investigated the use of halogenated PB reagents and ion mobility to improve the identification of PB-derivatized lipids by shifting them out of the densely populated lipid region of ion mobility-mass spectrometry (IM-MS) space. Several halogenated PB reagents containing fluorine, chlorine and bromine were investigated for their ability to decrease the collision cross-section (CCS) values of derivatized lipids and yield sufficient intensity for both the derivatized lipid and its diagnostic ions. We found that 4'-chloro-2',6'-difluoroacetophenone (CDFAP) displayed the best performance, with an average decrease in CCS of 4.4% and yield of derivatized lipids and diagnostic ions comparable to the trifluorinated acetophenone reagent proposed by the Xia group. The unique isotope pattern resulting from the chlorine substituent aided in identification of the derivatized lipids and their diagnostic ions, as well. We further demonstrate that derivatization with CDFAP preserves the separation of lipids classes in IM-MS space.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.2c00211DOI Listing

Publication Analysis

Top Keywords

derivatized lipids
16
diagnostic ions
16
ion mobility
8
halogenated acetophenones
8
low yield
8
yield derivatized
8
halogenated reagents
8
im-ms space
8
lipids diagnostic
8
lipids
7

Similar Publications

Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp. HL-50 guided by molecular networking and their anti-inflammatory activity.

Chin J Nat Med

January 2025

Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China. Electronic address:

Guided by molecular networking, nine novel curvularin derivatives (1-9) and 16 known analogs (10-25) were isolated from the hydrothermal vent sediment fungus Penicillium sp. HL-50. Notably, compounds 5-7 represented a hybrid of curvularin and purine.

View Article and Find Full Text PDF

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

Use of Biotin-Labeled Geranyl Pyrophosphate for Analysis of Ykt6 Geranylgeranylation.

Methods Mol Biol

January 2025

Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.

View Article and Find Full Text PDF

To explore the mechanism by which vinegar-processed Euphorbiae Pekinensis Radix regulates gut microbiota and reduces intestinal toxicity, this study aimed to identify key microbial communities related to vinegar-induced detoxification and verify their functions. Using a derivatization method, the study measured the content of short-chain fatty acids(SCFAs) in feces before and after vinegar-processing of Euphorbiae Pekinensis Radix. Combined with the results of previous gut microbiota sequencing, correlation analysis was used to identify key microbial communities related to SCFAs content.

View Article and Find Full Text PDF

Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!