Nitrile activation is a prominent topic in recent developments in chemistry, especially in organic, inorganic, biological chemistry, as well as in the natural synthesis of products and in the pharmaceutical industry. The activation of nitriles using both metal and non-metal precursors has attracted several researchers, who are exploring newer ways to synthesize novel compounds. Nitrile activation can be achieved by combining various catalytic double hydroelementation reactions, such as hydrosilylation, hydroboration, and hydrogenation of organonitriles using silanes, pinacolborane, and other sources of hydrogen. These methodologies have garnered considerable attention since they are effective in the reduction of organonitriles, whose end products are extensively applied in synthetic organic chemistry. In this review, we summarize the development of selective hydroborylation, hydrosilylation, dihydroborysilylation, and hydrogenation of organonitriles, as well as their reaction mechanisms and the role of metal complexes in the catalytic cycles. This review article explains various synthetic methodologies applied toward the reduction of organonitriles into corresponding amines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202200192 | DOI Listing |
Burns
January 2025
St. Andrew's Centre for Plastic Surgery and Burns, Mid and South Essex NHS Foundation Trust, Chelmsford CM1 7E, UK; St. Andrew's Anglia Ruskin Research (StAAR) Group, Anglia Ruskin University, Chelmsford, UK.
Introduction: Scalds account for 40 % of burn injuries in developed countries, with a subset occurring during caregiving activities, particularly when gloves are worn. Gloves, a standard precaution against infection and body fluid exposure, may impair sensory feedback critical for detecting temperature changes, potentially increasing the risk of burns during personal care tasks.
Methods: This study investigated the impact of glove use on heat perception.
Org Lett
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China.
A novel Ru-catalyzed radical-triggered trifunctionalization of hexenenitriles is presented, employing a strategy of remote cyano group migration and -C(sp)-H functionalization. Through remote cyano migration, the alkenyl moiety undergoes difunctionalization to the formation of a benzylic radical intermediate. This intermediate facilitates -selective C-H bond addition relative to the C-Ru bond within the Ru(III) complex, ultimately enabling trifunctionalization.
View Article and Find Full Text PDFLaetrile, known as vitamin B17, is often used interchangeably with amygdalin. Laetrile is a semi-synthesis product of amygdalin, whereas amygdalin is a naturally occurring substance in many plants. Both compounds have a nitrile functional group that, when activated by the intestinal enzyme β-glucosidases, releases hydrogen cyanide.
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
Synthetic insecticides have been widely used for the prevention and control of disease vectors and agricultural pests. However, frequent uses of insecticides have resulted in the development of insecticide resistance in these insect pests. The resistance adversely affects the efficacy of insecticides, and seriously reduces the lifespan of insecticides.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
We report the synthesis and characterization of bis(diiminate)-supported tricoordinated zinc complexes () and demonstrate the catalytic activity of one representative compound in the hydroboration of nitriles and carbodiimides using pinacolborane (HBpin). Experimental and theoretical studies were performed to elucidate the reaction mechanism. Our findings indicate that the hydroboration reaction initiates with the formation of a tricoordinated zinc hydride intermediate, followed by the subsequent attack of nitriles and carbodiimides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!