A Portable Electrochemical Sensor Based on Manganese Porphyrin-Functionalized Carbon Cloth for Highly Sensitive Detection of Nitroaromatics and Gaseous Phenol.

Langmuir

Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.

Published: October 2022

Organic pollutants (OPs) have garnered a considerable amount of attention in recent times due to their extreme toxicity toward humans and the ecosystem. The need for an inexpensive yet robust, sensitive, selective, and easy-to-operate method for detecting OPs remains a challenge. Herein, a portable electrochemical sensor is proposed based on manganese porphyrin-functionalized carbon cloth (CC). To explain the electrochemical performance of the sensor, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed. The presence of manganese(III) ion in the center of the porphyrin ligand acted as an agent for the transfer of electrons and enhanced sensitivity toward analyte-specific redox catalysis. Moreover, it allowed for the concurrent detection of multiple analytes in a complex environment. The modified CC electrode can selectively detect nitroaromatic and phenolic compounds with accessible data collected through wireless means onto a smartphone device. The as-synthesized electrode demonstrated a higher sensitivity toward the detection of nitrobenzene (NB) and aqueous phenol with a limit of detection (LOD) found to be 5.9268 × 10 M and 4.0178 × 10 M, respectively. Additionally, our proposed portable electrochemical sensor demonstrates a high selectivity and reproducibility toward nitroaromatic and phenolic compounds, which can be employed in real complex water samples. With regard to the sensor's remarkable electrochemical performance, it is envisaged that such a sensor could pave the way for environmental point of care (POC) testing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c01908DOI Listing

Publication Analysis

Top Keywords

portable electrochemical
12
electrochemical sensor
12
based manganese
8
manganese porphyrin-functionalized
8
porphyrin-functionalized carbon
8
carbon cloth
8
electrochemical performance
8
nitroaromatic phenolic
8
phenolic compounds
8
sensor
5

Similar Publications

A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases.

Front Med (Lausanne)

January 2025

Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.

Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases.

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and the impedance reader is utilized to monitor transmembrane impedance changes. The biosensor is utilized to detect amodiaquine molecules using an amodiaquine-binding aptamer (OR7)-functionalized membrane.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!