Gut peptides are small peptides secreted by gut endocrine cells that can modulate the roles and functions of different organs through signaling. Gut peptides can also majorly impact the body's energy homeostasis by regulating appetite and energy metabolism. The gut-brain axis (GBA) is bidirectional communication between the central nervous system (CNS) and the peripheral enteric nervous system. The regulation of appetite acts by hypothalamic neuronal activity. The complex interaction of hedonic and homeostatic factors implicates appetite regulation. In the CNS, the hypothalamus and brainstem have a dominating role in appetite regulation. The arcuate nucleus (ARC) of the hypothalamus plays a vital role in energy homeostasis, while other nuclei also play a role in appetite regulation. The gut conveys peripheral information about energy balance to the brain via gut peptides and receptors for the digestion of food. The varied gut peptides have different actions on appetite regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929866529666220920150127 | DOI Listing |
Food Funct
December 2024
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
Food-derived active peptides (FDAPs) are a class of peptides that exert antioxidant, anti-inflammatory, anti-aging and other effects. In recent years, active peptides from natural foods have been reported to improve skin photoaging, but their mechanisms have not been summarized to date. In this review, we focused on the preparation of FDAPs, their mechanisms of photoaging, and their function against photoaging through the gastrointestinal barrier.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
Microbiology Department, The Institute of Science, Dr. Homi Bhabha State University, Mumbai, India.
Background: Bacillus subtilis AU-2, isolated from the gut of Tribolium castaneum, was used for protease production. The purified protease was evaluated for its potential in food-related applications including meat tenderization, milk coagulation, and the preparation of enzymatic soybean hydrolysates. Enzymatic hydrolysis of soy protein is an effective method for producing protein hydrolysates with optimal techno-functional properties.
View Article and Find Full Text PDFFood Funct
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
Zinc is essential for maintaining the integrity and repair of small intestinal epithelial cells while zinc deficiency could induce the inflammatory infiltration and imbalance of intestinal flora in the intestine. In this study, glycosylation between oyster protein hydrolysate (OPH) and chitosan oligosaccharide (COS) was conducted and used as the carrier of zinc ions (OCZn). The results of zeta potential and particle size distribution showed that the OPH-COS successfully bound to zinc ions to form OCZn with a surface zinc content of 0.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for assays, particularly the generation of a mucus layer, has proven to be challenging.
View Article and Find Full Text PDFEFSA J
December 2024
Department of Biomedical Sciences, Institute of Biochemistry and Cell Biology National Research Council of Italy Naples Italy.
This study provides a comprehensive proteomic and metabolomic analysis of novel anthocyanin- and carotenoid-rich wheat varieties to assess their immunogenicity in the context of Celiac Disease. Using (semi)-quantitative mass spectrometry, the research found that gliadin expression and peptide release, particularly those containing immunostimulatory γ-gliadin epitopes, vary significantly across different wheat varieties. While non-targeted mass spectrometry provided valuable insights, the study acknowledged potential methodological biases, such limitations of ion current intensity as a measure of peptide abundance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!