Early exposure to science is critical to incite interest in scientific careers, promote equity and retention in STEM fields, and increase the general understanding of the scientific method. For many educators, however, the myriad resources that many scientific experiments require are not readily available. Microbiology experiments in particular can often be inaccessible for a lot of classrooms. In addition, microbiological studies often involve eukaryotic microbes and bacteria while excluding an entire domain of life: archaea. Archaea are more closely related to eukaryotes than are bacteria, and although all prokaryotic cells lack a nucleus, various key aspects of the cell biology of archaea and bacteria are fundamentally different. In addition to being useful for teaching about the diversity and evolution of living organisms, these differences between archaea and bacteria can also be harnessed to teach and emphasize other important biological topics. Haloferax volcanii is a non-pathogenic model haloarchaeon that allows for safe, affordable, and accessible microbiological experiments, as the requirement of high-salt media to grow H. volcanii presents a low risk of contamination. Here, we describe how H. volcanii can be used in the classroom and outline a protocol demonstrating their resistance to a broad spectrum of antibiotics, underscoring the distinct cell biology of bacteria and archaea. Finally, we introduce strategies and protocols to perform this and other H. volcanii experiments such that they can be performed based on the resources available in a high school or undergraduate classroom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2445-6_34 | DOI Listing |
Biochem Mol Biol Educ
December 2024
Instituto de Investigaciones Biológicas (IIB-CONICET-UNMDP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
Perturbation of gene expression using RNA interference (RNAi) or CRISPR interference (CRISPRi) is a useful strategy to explore the function of essential genes. In the archaeon Haloferax volcanii, the CRISPR-Cas system has been adapted as a CRISPRi tool to silence the expression of specific genes. We developed a laboratory class (LC) to conceptualize gene silencing through inactivation of the H.
View Article and Find Full Text PDFFront Microbiol
November 2024
Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
CetZ proteins are archaea-specific homologs of the cytoskeletal proteins FtsZ and tubulin. In the pleomorphic archaeon , CetZ1 contributes to the development of rod shape and motility, and has been implicated in the proper assembly and positioning of the archaellum and chemotaxis motility proteins. CetZ1 shows complex subcellular localization, including irregular midcell structures and filaments along the long axis of developing rods and patches at the cell poles of the motile rod cell type.
View Article and Find Full Text PDFJ Biol Chem
November 2024
RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland. Electronic address:
Nucleases, that is, enzymes that catalyze the hydrolysis of phosphodiester bonds in nucleic acids, are essential tools in molecular biology and biotechnology. Staphylococcus aureus nuclease is particularly interesting due to its thermostability and Ca dependence, making it the prime choice for applications where nuclease modulation is critical, such as ribosome profiling in bacteria and halophilic archaea. The latter poses a technical and economical challenge: high salt reaction conditions are essential for maintaining ribosome integrity but negatively impact the micrococcal nuclease (MNase) activity, necessitating using large amounts of nuclease to achieve efficient cleavage.
View Article and Find Full Text PDFFront Microbiol
November 2024
Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as , MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea.
View Article and Find Full Text PDFEnviron Microbiol Rep
December 2024
Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain.
Haloarchaea, known for their resilience to environmental fluctuations, require a minimum salt concentration of 10% (w/v) for growth and can survive up to 35% (w/v) salinity. In biotechnology, these halophiles have diverse industrial applications. This study investigates the tolerance responses of nine haloarchaea: Haloferax mediterranei, Haloferax volcanii, Haloferax gibbonsii, Halorubrum californiense, Halorubrum litoreum, Natrinema pellirubrum, Natrinema altunense, Haloterrigena thermotolerans and Haloarcula sinaiiensis, under various stressful conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!