Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Efflux pumps are one of the major contributors in the intrinsic multidrug resistance of Mycobacterium tuberculosis. These active transporters, localized in the cytoplasmic membrane, often carry an array of unrelated substances, from toxic substances to metabolites and maintain cellular homeostasis. Rv1877, a putative Major Facilitator Superfamily efflux pump from M. tuberculosis, was investigated in this study. Expression of Rv1877 in Escherichia coli resulted in elevated resistance towards antibiotics of various families. A reversal of this resistance was observed in the presence of sub-inhibitory concentration of the uncoupler carbonyl cyanide-m-chlorophenylhydrazone, indicating its dependence on proton motive force (pmf). Lower intracellular accumulation of the fluoroquinolones ofloxacin and levofloxacin in E. coli cells harbouring Rv1877 implied an active efflux of the drugs. Interestingly, real time, energy-dependent efflux was demonstrated by cells expressing Rv1877 with a lipophilic dye Nile Red. In addition, expression of Rv1877 in trans increased the biofilm formation by the host E. coli cells. Moreover, in silico docking analysis of the molecular interactions between Rv1877 and antibiotics corroborated the experimental observations. Based on the in vivo analyses of Rv1877 in E. coli, it could be designated as a pmf-dependent multidrug transporter with the ability of extruding structurally unrelated antibiotics, preferably some of the fluoroquinolones, and a facilitator of biofilm formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-022-03021-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!