A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Enhancer-Binding Protein MifR, an Essential Regulator of α-Ketoglutarate Transport, Is Required for Full Virulence of Pseudomonas aeruginosa PAO1 in a Mouse Model of Pneumonia. | LitMetric

The opportunistic human pathogen Pseudomonas aeruginosa PAO1 has an extensive metabolism, enabling it to utilize a wide range of structurally diverse compounds to meet its nutritional and energy needs. Interestingly, the utilization of some of the more unusual compounds often associated with a eukaryotic-host environment is regulated via enhancer-binding proteins (EBPs) in P. aeruginosa. Whether the utilization of such compounds and the EBPs involved contribute to the pathogenesis of P. aeruginosa remains to be fully understood. To narrow this gap, we investigated the roles of the EBPs EatR (regulator of ethanolamine catabolism), DdaR (regulator of methylarginine catabolism), and MifR (regulator of α-ketoglutarate or α-KG transport) in the virulence of P. aeruginosa PAO1 in a pneumonia-induced septic mouse model. Deletion of genes encoding EatR and DdaR had no significant effect on the mortality of P. aeruginosa PAO1-infected mice compared to wide-type (WT) PAO1-infected mice. In contrast, infected mice with Δ mutant exhibited a significant reduction (~50%) in the mortality rate compared with WT PAO1 ( < 0.05). Infected mice with Δ PAO1 had lower lung injury scores, fewer inflammatory cells, decreased proinflammatory cytokines, and decreased apoptosis and cell death compared to mice infected with WT PAO1 ( < 0.05). Furthermore, molecular analysis revealed decreased NLRP3 inflammasome activation in infected mice with Δ PAO1 compared to WT PAO1 ( < 0.05). These results suggested that the utilization of α-KG was a contributing factor in P. aeruginosa-mediated pneumonia and sepsis and that MifR-associated regulation may be a potential therapeutic target for P. aeruginosa infectious disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584295PMC
http://dx.doi.org/10.1128/iai.00136-22DOI Listing

Publication Analysis

Top Keywords

aeruginosa pao1
12
infected mice
12
pao1 005
12
regulator α-ketoglutarate
8
pseudomonas aeruginosa
8
pao1
8
mouse model
8
pao1-infected mice
8
compared pao1
8
mice pao1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!