Siderophores play an important role in fungal virulence, serving as trackers for imaging and as biomarkers of fungal infections. However, siderophore uptake is only partially characterized. As the major cause of aspergillosis, Aspergillus fumigatus is one of the most common airborne fungal pathogens of humans. Here, we demonstrate that this mold species mediates the uptake of iron chelated by the secreted siderophores triacetylfusarinine C (TAFC) and fusarinine C by the major facilitator-type transporters MirB and MirD, respectively. In a murine aspergillosis model, MirB but not MirD was found to be crucial for virulence, indicating that TAFC-mediated uptake plays a dominant role during infection. In the absence of MirB, TAFC becomes inhibitory by decreasing iron availability because the mutant is not able to recognize iron that is chelated by TAFC. MirB-mediated transport was found to tolerate the conjugation of fluorescein isothiocyanate to triacetylfusarinine C, which might aid in the development of siderophore-based antifungals in a Trojan horse approach, particularly as the role of MirB in pathogenicity restrains its mutational inactivation. Taken together, this study identified the first eukaryotic siderophore transporter that is crucial for virulence and elucidated its translational potential as well as its evolutionary conservation. Aspergillus fumigatus is responsible for thousands of cases of invasive fungal disease annually. For iron uptake, A. fumigatus secretes so-called siderophores, which are taken up after the binding of environmental iron. Moreover, A. fumigatus can utilize siderophore types that are produced by other fungi or bacteria. Fungal siderophores raised considerable interest due to their role in virulence and their potential for the diagnosis and treatment of fungal infections. Here, we demonstrate that the siderophore transporter MirB is crucial for the virulence of A. fumigatus, which reveals that its substrate, triacetylfusarinine C, is the most important siderophore during infection. We found that in the absence of MirB, TAFC becomes inhibitory by decreasing the availability of environmental iron and that MirB-mediated transport tolerates the derivatization of its substrate, which might aid in the development of siderophore-based antifungals. This study significantly improved the understanding of fungal iron homeostasis and the role of siderophores in interactions with the host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600649PMC
http://dx.doi.org/10.1128/mbio.02192-22DOI Listing

Publication Analysis

Top Keywords

crucial virulence
16
aspergillus fumigatus
12
fungal infections
8
iron chelated
8
mirb mird
8
infection absence
8
absence mirb
8
mirb tafc
8
tafc inhibitory
8
inhibitory decreasing
8

Similar Publications

RpoN mediates biofilm formation by directly controlling gene cluster and c-di-GMP synthetic metabolism in .

Biofilm

June 2025

State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China.

is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that Δ formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which regulates biofilm formation has remained unclear.

View Article and Find Full Text PDF

Recent advancements in the diverse roles of polymerase-associated proteins in the replication and pathogenesis of Newcastle disease virus.

Vet Res

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China.

Newcastle disease virus (NDV) is a significant member of the Paramyxoviridae family, known for causing epidemics and substantial economic losses in the poultry industry worldwide. The NDV RNA genome primarily encodes six structural proteins (N, P, M, F, HN, and L) and two non-structural proteins (V and W). Among these, the polymerase-associated proteins (N, P, and L) and the viral RNA (vRNA) genome form the ribonucleoprotein complex, which plays a crucial role in the synthesis and transcription of NDV vRNA.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.

Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.

View Article and Find Full Text PDF

Unraveling the microRNAs Involved in Fasciolosis: Master Regulators of the Host-Parasite Crosstalk.

Int J Mol Sci

December 2024

Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14071 Córdoba, Spain.

Fasciolosis is a neglected tropical disease caused by helminth parasites of the genus spp., including () and (), being a major zoonotic problem of human and animal health. Its control with antihelminthics is becoming ineffective due to the increase in parasite resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!