A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A two-dimensional topological nodal-line material MgN with extremely large magnetoresistance. | LitMetric

Using first-principles calculations, we predict a stable two-dimensional atomically thin material MgN. This material has a perfect intrinsic electron-hole compensation characteristic with high carrier mobility, making it a promising candidate material with extremely large magnetoresistance. As the magnetic field increases, the magnetoresistance of the monolayer MgN will show a quadratic dependence on the strength of the magnetic field without saturation. Furthermore, nontrivial topological properties are also found in this material. In the absence of spin-orbit coupling, the monolayer MgN belongs to a topological nodal-line material, in which the band crossings form a closed saddle-shape nodal-ring near the Fermi level in the Brillouin zone. Once the spin-orbit coupling is considered, a small local energy gap is opened along the nodal ring, resulting in a topological insulator defined on a curved Fermi surface with  = 1. The combination of two-dimensional single-atomic-layer thickness, an extremely large magnetoresistance effect, and topological non-trivial properties in the monolayer MgN makes it an excellent platform for designing novel multi-functional devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr02873eDOI Listing

Publication Analysis

Top Keywords

extremely large
12
large magnetoresistance
12
monolayer mgn
12
topological nodal-line
8
nodal-line material
8
material mgn
8
magnetic field
8
spin-orbit coupling
8
material
6
mgn
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!