A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pinpointing basic sites formed upon incorporation of iron in hierarchical SAPO-11 using catalytic model reactions. | LitMetric

By utilizing previously established catalytic model reactions, a method for probing the topological location of transition metal sites incorporated in hierarchical silicoaluminophosphates (SAPOs) is presented. For the first time, iron(III)-incorporated hierarchical SAPO-11 (FeCTAB-11) was prepared and thoroughly characterized with conventional iron(III)-incorporated SAPO-11 (FeSAPO-11) as a reference. Initially, inductively coupled plasma - mass spectrometry (ICP-MS) indicated that the FeSAPOs contained similar amounts of metal (∼2.0 wt%), while N-physisorption confirmed the bimodal porosity of the hierarchical FeCTAB-11. Furthermore, X-ray absorption spectroscopy (XAS) revealed that iron(III) was isomorphously incorporated into both SAPO-11 samples, whereas CO-temperature programmed desorption (TPD) revealed the first reported presence of strong basic sites in the vicinity of a transition metal incorporated into a SAPO framework. The location of the basic sites, and thus the incorporated iron, was subsequently probed by studying the products of the base-catalyzed vapor phase isomerization of cyclohexanone oxime (Beckmann rearrangement, BMR) model reaction. Through an increased lifetime for the base-catalyzed production of aniline, the incorporated iron for FeCTAB-11 was found to be located in highly accessible mesopores, whereas the conventional FeSAPO-11 had incorporated iron located in its micropores. Lastly, the methanol-to-hydrocarbons (MTH) model reaction showed that both FeSAPOs only had Brønsted acid sites in the micropores of the structures. This was used to verify the pore connectivity of the hierarchical FeCTAB-11 by utilizing the base-catalyzed BMR mechanism's dependency on acid sites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt02263jDOI Listing

Publication Analysis

Top Keywords

basic sites
12
incorporated iron
12
hierarchical sapo-11
8
catalytic model
8
model reactions
8
transition metal
8
sites incorporated
8
hierarchical fectab-11
8
model reaction
8
acid sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!