Recent studies in many kinds of mammals have established the existence of multiple γ rhythms in the cerebral cortex subserving different functions. In the primary visual cortex (V1), visually induced γ rhythms are dependent on stimulus features. However, experimental findings of γ power induced by varying the size of the drifting grating are inconsistent. Here, we reinvestigated the spatial summation properties of visually induced spike and γ rhythm activities in mouse V1. Our results show that drifting sinusoidal grating stimuli mainly induce 2 γ band rhythms, including a low-frequency band (25-45 Hz) and a high-frequency band (55-75 Hz). Unlike previous findings, we discovered that visually induced γ power could also exhibit extrareceptive field (ERF) modulatory properties. The modulation by ERF stimulation could be either suppressive, countersuppressive, or nonsuppressive, mostly similar to the local spike activity. Moreover, further analysis of the neuron group exhibiting surround suppression in both spike and γ activity revealed that the strength of the surround suppression and the receptive field size showed moderate correlations between measurements by spike and γ rhythm activity. Our findings improve the understanding of the characteristics and neural mechanisms of induced γ rhythms in visual spatial summation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhac347 | DOI Listing |
J Am Chem Soc
January 2025
Center for Electron Microscopy, South China University of Technology, Guangzhou 511436, China.
Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy; Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA. Electronic address:
Reduced expression of nucleolar genes induces stress and DNA damage. Here, we present a protocol to analyze DNA fragmentation at the single-cell level in Drosophila imaginal discs using an optimized alkaline comet assay. We describe steps for larvae development, tissue disaggregation, and single-cell dissociation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233.
Heart failure (HF) is a leading cause of death worldwide. We have shown that pressure overload (PO)-induced inflammatory cell recruitment leads to heart failure in IL-10 knockout (KO) mice. However, it's unclear if PO-induced inflammatory cells also target the gut mucosa, causing gut dysbiosis and leakage.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain.
Purpose: Peripheral optics have been suggested to play a role in myopia progression, with accommodation responses also considered a potential contributor. This study aimed to investigate whether modifications in peripheral optics through different spectacle lenses affect accommodation responses.
Methods: Dynamic accommodation responses were assessed using a double-pass instrument while switching the target from distance (3 m for 3 seconds) to near (0.
Adv Sci (Weinh)
January 2025
State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!