The COVID-19 pandemic caused severe economic contraction and paralyzed industrial activity. Despite a growing body of literature on the impacts of COVID-19 mitigation measures, scant evidence currently exists on the impacts of lockdowns on the economic and industrial activities of developing countries. Our study provides an empirical assessment of lockdown measures using 298,354 data points on daily electricity consumption in 396 sub-industries. To infer causal relationships, we employ difference-in-differences models that compare cities with and without lockdown policies and provide quantitative evidence on whether the long-term gain of lockdowns outweighs the short-term loss. The results show that lockdown policies led to a significant short-term drop in electricity consumption of 15.2% relative to the control group. However, the electricity loss under the no-lockdown scenario is 2.6 times larger than that under the strict lockdown scenario within 4 months of the outbreak. Discrepancies in the impacts among industries are identified, and even within the same industry, lockdowns have heterogeneous effects. The impact of lockdowns on small and medium-sized enterprises in developing countries is seriously underestimated, raising concerns about the distributional impact of subsidy measures. This study serves as a crucial reference for the government when facing public health emergencies and shocks to support better policies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474405PMC
http://dx.doi.org/10.1016/j.eneco.2022.106318DOI Listing

Publication Analysis

Top Keywords

electricity consumption
12
discrepancies impacts
8
impacts covid-19
8
developing countries
8
lockdown policies
8
lockdowns
5
covid-19 lockdowns
4
electricity
4
lockdowns electricity
4
consumption china
4

Similar Publications

Ammonia (NH) is esteemed for its attributes as a carbon-neutral fuel and hydrogen storage material, due to its high energy density, abundant hydrogen content, and notably higher liquefaction temperature in comparison to hydrogen gas. The primary method for the synthetic generation of NH is the Haber-Bosch process, involving rigorous conditions and resulting in significant global energy consumption and carbon dioxide emissions. To tackle energy and environmental challenges, the exploration of innovative green and sustainable technologies for NH synthesis is imperative.

View Article and Find Full Text PDF

Programmable synaptic devices that can achieve timing-dependent weight updates are key components to implementing energy-efficient spiking neural networks (SNNs). Electrochemical ionic synapses (EIS) enable the programming of weight updates with very low energy consumption and low variability. Here, the strongly nonlinear kinetics of EIS, arising from nonlinear dynamics of ions and charge transfer reactions in solids, are leveraged to implement various forms of spike-timing-dependent plasticity (STDP).

View Article and Find Full Text PDF

Background: Chronic neuropathic pain is a major health problem that adversely affects people's physical and mental well-being, as well as their quality of life. Percutaneous peripheral nerve stimulation (PNS) may offer a minimally invasive option earlier in the treatment continuum for adults with chronic neuropathic pain that is refractory to conventional medical management. We conducted a health technology assessment of PNS for adults with chronic neuropathic pain, which included an evaluation of effectiveness, safety, cost-effectiveness, the budget impact of publicly funding PNS, and patient preferences and values.

View Article and Find Full Text PDF

Over time, the importance of virtual power plants (VPP) has markedly risen to seamlessly incorporate the sporadic nature of renewable energy sources into the existing smart grid framework. Simultaneously, there is a growing need for advanced forecasting methods to bolster the grid's stability, flexibility, and dispatchability. This paper presents a dual-pronged, innovative approach to maximize income in the day-ahead power market through VPP.

View Article and Find Full Text PDF

Society for Cardiovascular Magnetic Resonance recommendations toward environmentally sustainable cardiovascular magnetic resonance.

J Cardiovasc Magn Reson

January 2025

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA. Electronic address:

Delivery of health care, including medical imaging, generates substantial global greenhouse gas emissions. The cardiovascular magnetic resonance (CMR) community has an opportunity to decrease our carbon footprint, mitigate the effects of the climate crisis, and develop resiliency to current and future impacts of climate change. The goal of this document is to review and recommend actions and strategies to allow for CMR operation with improved sustainability, including efficient CMR protocols and CMR imaging workflow strategies for reducing greenhouse gas emissions, energy, and waste, and to decrease reliance on finite resources, including helium and waterbody contamination by gadolinium-based contrast agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!