When conducting combined therapy of malignant neoplasms, treatment methods with various mechanisms of antitumor effects are used, while an additive or even synergistic effect can be realized. Combination treatment regimens are aimed at increasing the efficiency and, above all, at the complete eradication of the tumor, which can be achieved either by suppressing the survival mechanisms in PDT-resistant tumor cells or by pre-attenuation of tumor cells so that they become more susceptible to subsequent PDT. Photodynamic therapy is an approved medical technology for the treatment of various malignant neoplasms, and several precancerous and non-cancer diseases. To date, numerous data have been published on the combined use of PDT with traditional and innovative methods of treatment. This review considers research in this area in recent years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481804PMC
http://dx.doi.org/10.1007/s12551-022-00962-6DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
malignant neoplasms
8
tumor cells
8
treatment
5
advantages combined
4
combined photodynamic
4
therapy treatment
4
treatment oncological
4
oncological diseases
4
diseases conducting
4

Similar Publications

A multifunctional graphene oxide-based nanodrug delivery system for tumor targeted diagnosis and treatment under chemotherapy-photothermal-photodynamic synergy.

Colloids Surf B Biointerfaces

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs).

View Article and Find Full Text PDF

Electrostatic Force-Enabled Microneedle Patches that Exploit Photoredox Catalysis for Transdermal Phototherapy.

ACS Appl Mater Interfaces

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Microneedle patches for topical administration of photodynamic therapy (PDT) sensitizers are attractive owing to their safety, selectivity, and noninvasiveness. However, low-efficiency photosensitizer delivery coupled with the limitations of the hypoxic tumor microenvironment remains challenging. To overcome these issues, we developed an effective microneedle patch based on intermolecular electrostatic interactions within a photosensitizer matrix containing a zinc-containing porphyrin analogue, .

View Article and Find Full Text PDF

Nano-Armed Limosilactobacillus reuteri for Enhanced Photo-Immunotherapy and Microbiota Tryptophan Metabolism against Colorectal Cancer.

Adv Sci (Weinh)

December 2024

Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610054, China.

Despite being a groundbreaking approach to treating colorectal cancer (CRC), the efficacy of immunotherapy is significantly compromised by the immunosuppressive tumor microenvironment and dysbiotic intestinal microbiota. Here, leveraging the superior carrying capacity and innate immunity-stimulating property of living bacteria, a nanomedicine-engineered bacterium, LR-S-CD/CpG@LNP, with optical responsiveness, immune-stimulating activity, and the ability to regulate microbiota metabolome is developed. Immunoadjuvant (CpG) and carbon dot (CD) co-loaded plant lipid nanoparticles (CD/CpG@LNPs) are constructed and conjugated to the surface of Limosilactobacillus reuteri (LR) via reactive oxygen species (ROS)-responsive linkers.

View Article and Find Full Text PDF

Photodynamic therapy of cancer-associated infections.

Photochem Photobiol

December 2024

Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

Pathogens can be involved in tumor initiation, promotion, and progression through different mechanisms, and their treatment can prevent new cancer cases, improve outcomes, and revert poor-prognostic phenotypes. Photodynamic therapy (PDT) successfully treats different types of cancers and infections and, therefore, has a unique potential to address their combination. However, we believe this potential has been underutilized, and few researchers have investigated the impacts of PDT of both infection-related and cancer-related outcomes at once.

View Article and Find Full Text PDF

Background: Conventional photodynamic therapy (cPDT) is an effective treatment option for field cancerization and multiple actinic keratoses (AK). The main side effect of cPDT is pain during illumination which in severe cases might necessitate early termination of treatment. Modification of treatment parameters such as light dose and fluence rate is a promising approach to mitigate PDT-associated pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!