An outline of the "Microalgae as converters of light energy into biofuels and high-value products" section of the 9th Congress of the Russian Photobiological Society is presented. Key talks and poster presentations are briefly introduced along with key findings made by their authors. We conclude that this section was a success with many interesting talks and a vigorous follow-up discussion indicative of the keen interest of Russian researchers in microalgae and biotechnologies based on these microorganisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481836PMC
http://dx.doi.org/10.1007/s12551-022-00975-1DOI Listing

Publication Analysis

Top Keywords

"microalgae converters
8
converters light
8
light energy
8
energy biofuels
8
biofuels high-value
8
high-value products"
8
9th congress
8
products" session
4
session russian
4
russian photobiology
4

Similar Publications

Microalgae offer a compelling platform for the production of commodity products, due to their superior photosynthetic efficiency, adaptability to nonarable lands and nonpotable water, and their capacity to produce a versatile array of bioproducts, including biofuels and biomaterials. However, the scalability of microalgae as a bioresource has been hindered by challenges such as costly biomass production related to vulnerability to pond crashes during large-scale cultivation. This study presents a pipeline for the genetic engineering and pilot-scale production of biodiesel and thermoplastic polyurethane precursors in the extremophile species .

View Article and Find Full Text PDF

Performance, kinetics, and mechanism of 1,2,3-trimethylbenzene biodegradation by a newly isolated marine microalga.

J Environ Manage

January 2025

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.

Article Synopsis
  • Recent marine pollution concerns revolve around the accidental spills of toxic C9 aromatics, particularly 1,2,3-trimethylbenzene (1,2,3-TMB), due to its high toxicity and resistance to degradation.
  • A marine diatom, Chaetoceros sp. QG-1, was isolated from Quangang, China, and demonstrated the highest degradation efficiency of 1,2,3-TMB at a concentration of 5 mg/L.
  • The study identified the degradation process, where 1,2,3-TMB is converted into less harmful compounds, involving key enzymes like 2OG Fe(II) oxygenase, thus supporting bioremediation efforts in polluted marine environments
View Article and Find Full Text PDF

Characterizing A21: Natural Cyanobacteria-Based Consortium with Potential for Steroid Bioremediation in Wastewater Treatment.

Int J Mol Sci

December 2024

Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, c/Jose Antonio Novais 12, 28040 Madrid, Spain.

Microalga-bacteria consortia are increasingly recognized for their effectiveness in wastewater treatment, leveraging the metabolic synergy between microalgae and bacteria to enhance nutrient removal and overall treatment efficiency. These systems offer a sustainable approach to addressing pollutants such as nitrogen and phosphorus. However, their potential in removing specific contaminants like steroid hormones is less explored.

View Article and Find Full Text PDF

Photoproduction of Aviation Fuel β-Caryophyllene From the Eukaryotic Green Microalga Chlamydomonas reinhardtii.

Biotechnol Bioeng

December 2024

MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.

β-caryophyllene is a plant-derived sesquiterpene and is regarded as a promising ingredient for aviation fuels. Microalgae can convert CO into energy-rich bioproducts through photosynthesis, making them potential platforms for the sustainable production of sesquiterpenes. However, heterologous sesquiterpene engineering in microalgae is still in its infancy, and β-caryophyllene production in eukaryotic photosynthetic microorganisms has not been reported.

View Article and Find Full Text PDF

Innovative microalgae technologies for mariculture wastewater treatment: Single and combined microalgae treatment mechanisms, challenges and future prospects.

Environ Res

February 2025

School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning, 530004, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, China. Electronic address:

The discharge of aquaculture wastewater, comprising nitrogen, phosphorus, heavy metals, and antibiotics from large-scale aquaculture, poses a significant threat to marine ecosystems and human health. Consequently, addressing the treatment of marine aquaculture wastewater is imperative. Conventional physicochemical treatment methods have various limitations, whereas microalgae-based biological treatment technologies have gained increasing attention in the field of water purification due to their ability to efficiently absorb organic matter from mariculture wastewater and convert CO₂ into biomass products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!