Region Convolutional Neural Network for Brain Tumor Segmentation.

Comput Intell Neurosci

Department of Computer Science, Woldia Institute of Technology, Woldia University, North Wollo, Ethiopia.

Published: September 2022

Gliomas are often difficult to find and distinguish using typical manual segmentation approaches because of their vast range of changes in size, shape, and appearance. Furthermore, the manual annotation of cancer tissue segmentation under the close supervision of a human professional is both time-consuming and exhausting to perform. It will be easier and faster in the future to get accurate and quick diagnoses and treatments thanks to automated segmentation and survival rate prediction models that can be used now. In this article, a segmentation model is designed using RCNN that enables automatic prognosis on brain tumors using MRI. The study adopts a U-Net encoder for capturing the features during the training of the model. The feature extraction extracts geometric features for the estimation of tumor size. It is seen that the shape, location, and size of a tumor are significant factors in the estimation of prognosis. The experimental methods are conducted to test the efficacy of the model, and the results of the simulation show that the proposed method achieves a reduced error rate with increased accuracy than other methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482475PMC
http://dx.doi.org/10.1155/2022/8335255DOI Listing

Publication Analysis

Top Keywords

size shape
8
segmentation
5
region convolutional
4
convolutional neural
4
neural network
4
network brain
4
brain tumor
4
tumor segmentation
4
segmentation gliomas
4
gliomas difficult
4

Similar Publications

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products.

View Article and Find Full Text PDF

Marine litter and microplastics (MPs) represent pressing environmental challenges; however, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan. Multiple methods were employed to evaluate whether the marine litter hotspot was a source of airborne MPs.

View Article and Find Full Text PDF

The effect of the foreign body response on drug elution from subdermal delivery systems.

Biomaterials

January 2025

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA. Electronic address:

Contrasting findings are presented in the literature regarding the influence of foreign body response (FBR) on drug release from implantable drug delivery systems. To this end, here we sought direct evidence of the effect of the fibrotic tissue on subcutaneous drug release from long-acting drug delivery implants. Specifically, we investigated the pharmacokinetic impact of fibrotic encapsulation on a small molecule drug, islatravir (293 Da), and a large protein, IgG (150 kDa), administered via biocompatible implants.

View Article and Find Full Text PDF

SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila.

Differentiation

January 2025

Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Vavilova st. 26, Moscow, 119334, Russia. Electronic address:

Most hydrozoan cnidarians form complex colonies that vary in size, shape, and branching patterns. However, little is known about the molecular genetic mechanisms responsible for the diversity of the hydrozoan body plans. The Nodal signaling pathway has previously been shown to be essential for setting up a new body axis in a budding Hydra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!