Recent advances in muscle food safety evaluation: Hyperspectral imaging analyses and applications.

Crit Rev Food Sci Nutr

School of Food Science and Engineering, South China University of Technology, Guangzhou, China.

Published: March 2023

As there is growing interest in process control for quality and safety in the meat industry, by integrating spectroscopy and imaging technologies into one system, hyperspectral imaging, or chemical or spectroscopic imaging has become an alternative analytical technique that can provide the spatial distribution of spectrum for fast and nondestructive detection of meat safety. This review addresses the configuration of the hyperspectral imaging system and safety indicators of muscle foods involving biological, chemical, and physical attributes and other associated hazards or poisons, which could cause safety problems. The emphasis focuses on applications of hyperspectral imaging techniques in the safety evaluation of muscle foods, including pork, beef, lamb, chicken, fish and other meat products. Although HSI can provide the spatial distribution of spectrum, characterized by overtones and combinations of the C-H, N-H, and O-H groups using different combinations of a light source, imaging spectrograph and camera, there still needs improvement to overcome the disadvantages of HSI technology for further applications at the industrial level.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2022.2121805DOI Listing

Publication Analysis

Top Keywords

hyperspectral imaging
16
safety evaluation
8
provide spatial
8
spatial distribution
8
distribution spectrum
8
muscle foods
8
imaging
7
safety
6
advances muscle
4
muscle food
4

Similar Publications

Efficacy of Segmentation for Hyperspectral Target Detection.

Sensors (Basel)

January 2025

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva blvd 1, Beer-Sheva 84105, Israel.

Algorithms for detecting point targets in hyperspectral imaging commonly employ the spectral inverse covariance matrix to whiten inherent image noise. Since data cubes often lack stationarity, segmentation appears to be an attractive preprocessing operation. Surprisingly, the literature reports both successful and unsuccessful segmentation cases, with no clear explanations for these divergent outcomes.

View Article and Find Full Text PDF

Search of Reflectance Indices for Estimating Photosynthetic Activity of Wheat Plants Under Drought Stress.

Plants (Basel)

December 2024

Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia.

Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the search for reflectance parameters for rapid screening of wheat genotypes with respect to photosynthetic activity under drought conditions.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) plays an important role to respond in the defence against damage when tomato leaves are under different types of adversity stresses. This work employed microhyperspectral imaging (MHSI) and visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) technologies to predict tomato leaf SOD activity. The macroscopic model of SOD activity in tomato leaves was constructed using the convolutional neural network in conjunction with the long and short-term temporal memory (CNN-LSTM) technique.

View Article and Find Full Text PDF

Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide polymorphic markers (SNPs) resulted in a substantial improvement in predictive ability compared to the conventional genomic prediction models. Over the course of several years, the prediction ability varied due to diverse weather conditions.

View Article and Find Full Text PDF

Introduction: Crocin-I, a water-soluble carotenoid pigment, is an important coloring constituent in gardenia fruit. It has wide application in various industries such as food, medicine, chemical industry, and so on. So the content of crocin-I plays a key role in evaluating the quality of gardenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!