The use of stable isotopes of carbon (δC) and nitrogen (δN) from feces and breath offers potential as non-destructive tools to assess diets and nutrition. How stable isotope values derived from breath and feces compare with those from commonly used tissues, such as blood fractions and liver, remains uncertain, including understanding the metabolic routing of dietary nutrients. Here, we measured δC and δN from feces and δC of breath from captive Red-necked Stints (Calidris ruficollis) and 26 species of wild-caught migratory shorebirds (n = 259 individuals) and compared them against isotopic values from blood and feathers. For captive birds fed either cereal- or fish-based diets, differences in δC between feces and lipid-free diet were small, - 0.2 ± 0.5‰ and 0.1 ± 0.3‰, respectively, and differences in δN, - 0.7 ± 0.5‰ and - 0.5 ± 0.5‰, respectively. Hence, δC and δN values from feces can serve as proxies for ingested proteinaceous tissues and non-soluble carbohydrates because isotopic discrimination can be considered negligible. Stable isotope values in plasma and feces were strongly correlated in wild-caught shorebirds, indicating feces can be used to infer assimilated macronutrients. Breath δC was 1.6 ± 0.8‰ to 5.6 ± 1.2‰ lower than bulk food sources, and breath C derived from lipids was estimated at 47.5% (cereal) to 96.1% (fish), likely underlining the importance of dietary lipids for metabolism. The findings validate the use of stable isotope values of feces and breath in isotopic assays to better understand the dietary needs of shorebirds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547797PMC
http://dx.doi.org/10.1007/s00442-022-05257-xDOI Listing

Publication Analysis

Top Keywords

stable isotope
16
δc δn
12
values feces
12
feces breath
12
isotope values
12
feces
9
δn values
8
δn feces
8
δc
7
breath
7

Similar Publications

Protein glycation compromises the bioavailability of milk protein-derived lysine in vivo in healthy adult males: a double-blind randomized cross-over trial.

Am J Clin Nutr

January 2025

Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands. Electronic address:

Background: Industrial processing and storage of milk products can strongly increase protein glycation level. Previously, we have reported that ingestion of highly glycated milk protein attenuates the post-prandial rise in plasma lysine concentrations when compared to the ingestion of an equivalent amount of milk protein with a low glycation level. Whether the attenuated increase in plasma lysine availability is attributed to compromised protein digestion and subsequent lysine absorption remains to be established.

View Article and Find Full Text PDF

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.

View Article and Find Full Text PDF

Background: Hemodialysis may excessively remove valuable solutes. Untargeted metabolomics data from a prior study suggested that ergothioneine was depleted in the plasma of hemodialysis subjects. Ergothioneine is a dietary-derived solute with antioxidant properties.

View Article and Find Full Text PDF

Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!